AQA Maths Decision 1 Mark Scheme Pack 2006-2015

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2006 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct x marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

Q	Solution	Marks	Total	Comments
1(a)		M1 A1	2	
(b)	Initial A3, B4, C2, E5 D-4+B-2+C <u>No</u>	B1 M1		Starting from D,1 Either
	D-5+E-3+A-1 Yes	A1		
	Complete A1, B4, C2, D5, E3	B1	4	Only solution
	Total		6	
(2)(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		Shuttle SCA 1 st Pass
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 A1		3 rd Pass 4 th Pass
	<u>2 7 12 16 18 19 24 26</u>	A1	5	All correct
(b)	Pass C S 1 1 1 2 2 1 3 3 2	B1 B1 B1	3	SC All C correct B1 or all S correct B1 or 6,4 scores B1
	Total		8	

Q	Solution	Marks	Total	Comments
3(a)(i)	AB 5	M1		SCA
	BD 3	B1		9 edges
	DC 1	A1		$DC 3^{rd}$
	DE 4	A1		DE 4 th
	DF 5			
	FG 6			
	<i>GI</i> 10			
	<i>GH</i> 11	B1	5	All correct
	<i>HJ</i> 13		-	All contect
(ii)	58	B1	1	
()		21	-	
(b)(i)	42	M1		SCA
(b)(i)		M1		3 values at D
		Al		All correct at <i>D</i>
	100 88 20,008			3 values at G
		M1		All correct
	A AN AND	A1 D1	6	
	VV	B1	6	42 at J – or in script
	(*)0 F23 730 12 28			
	12 28			
(ii)	28 + <i>x</i> < 42 O.E.	M1		Allow \leq SC $x \leq 13$ B1
(11)		A1	2	Allow $\leq 5C_{\lambda} \leq 15$ D1
	x < 14 ISW	711		
	Total	D 1	14	
4(a)	A, C, D, F odd nodes	B1		May be implied
	AC + DF = 18 + 22 = 40	M1		
	AD + CF = 32 + 30 = 62	A2,1,0		
	AF + CD = 12 + 30 = 42			
	Repeat $AC + DF$	B1		May be implied
	Repeat $AC + DF$ Total $164 + 40 = 204$		6	May be implied
	Repeat $AC + DF$ Total $164 + 40 = 204$	B1 B1	6	May be implied
(h)	Total $164 + 40 = 204$		6	May be implied
(b)	Total $164 + 40 = 204$ Start/finish A/C	B1	6	
(b)	Total 164 + 40 = 204 Start/finish A/C ∴ Repeat DF	B1 B1		May be implied Or subtract AC
(b)	Total $164 + 40 = 204$ Start/finish A/C	B1	6	
	Total $164 + 40 = 204$ Start/finish A/C \therefore Repeat DF Total $164 + 22 = 186$	B1 B1 B1		
(b) (c)(i)	Total $164 + 40 = 204$ Start/finish A/C \therefore Repeat DF Total $164 + 22 = 186$ Shortest pair AF	B1 B1 B1 B1	2	
	Total $164 + 40 = 204$ Start/finish A/C \therefore Repeat DF Total $164 + 22 = 186$	B1 B1 B1		
	Total $164 + 40 = 204$ Start/finish A/C \therefore Repeat DF Total $164 + 22 = 186$ Shortest pair AF	B1 B1 B1 B1	2	

_

MD01 (cont) Q	Solution	Marks	Total	Comments
5(a)(i)	7	B1	1	
	_	DI		
(ii)	7	B1	1	
(b)(i)	Missing values			
	(PF 3) any 2 values correct	B1		
	$\left(\text{OT } 3\frac{1}{4} \right)$ other 2 values correct	B1	2	
(ii)	FTPOMF			
(11)		B1	1	
	$=8\frac{1}{4}$ ISW	DI	1	
(iii)	FTMPOF	M1		Tour
		M1		Visits all vertices
	= 7	A1 B1	4	Correct order
	_ /	DI		
(iv)	Delete F			
		201		
	P0	M1 A1		MST – letters or numbers 3 edges
	1/	Al		Correct
	1			
	M			
	m			
	114			
	T			
	Add $1\frac{1}{4} + 2$	m1		Adding 2 edges from F
	4			
	$=6\frac{3}{4}$			$SC 6^3$ with no working $2/$
	4	A1	5	SC $6\frac{3}{4}$ with no working $\frac{2}{5}$
	Total		14	

Q	Solution	Marks	Total	Comments
6(a)	$10 \le x \le 80$	B1		Strict inequalities –1 (or using p, c)
	$5 \le y \le 40$	B1		
	$x + y \le 100$	D1		
	$20x + 60y \le 3000$ OE	B1 B1		
	(maximise)(P =) 2x + y	B1	5	May be seen in (b) or (c)
(b)	40	B1 M1A1 M1A1		For "x lines" and "y lines" For each other line M1–ve gradient $(0,50)$ M1-ve gradient $(100,0)$
		B1 B1	7	Feasible region correct to within 1 square Objective line
(c)	Max at (80,20)	M1		Considering an extreme point in their
(t)	$P = \pounds 180$	A1	2	region
	1 - 2100			
(d)	$\mathbf{P} = x + 4y$			
	Max at (30, 40)	M1		Using $(30,40)$ (±square)
	$\mathbf{P} = \pounds 190$	A1	2	
7(a)(i)	Total m-1	B1	16	
/(a)(l)	m = 1	DI	1	
(ii)	$n \ge m - 1$	B2	2	B1 for > or $(n > m)$ OE
()				
(b)	m(=n)	B1	1	
(c)		M1 A1	2	m = 6 and eulerian All correct
	Total		6	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
Α	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks an	d is for method	and accuracy			
Е	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Jan 07

Q	Solution	Marks	Total	Comments
1(a)		B1		8 edges
	<i>BC</i> 8	M1		SCA
	<i>AI</i> 9	A1		AI 3rd
	<i>BD</i> 13	A1		BD 4th
	<i>DE</i> 9			
	<i>DG</i> 11			
	DF, EF, GF 12			
	<i>IH</i> 16.5	A1	5	All correct
(b)	84	B1	1	
(c)		M1 B1 A1	3	Minimum spanning tree 8 edges All correct including labelling (or including <i>DF</i> or <i>GF</i> instead of <i>EF</i>)
(d)	2	B1	1	
	Total		10	

MD01

<u>D01 (cont</u> Q	Solution	Marks	Total	Comments
2(a)	A CONTRACTOR			
	BS IS	M1		Bipartite graph
	Contraction of the second seco			
	X			
	$\langle \rangle$	A1	2	All correct
	D			
	XX			
	$\langle \times \rangle$			
	E.			
(b)	Start with D (or S)	B1		
	D-U+E-S	M1		For attempt at any path
	or			
	D - V + A - R + B - T + C	A1		
	-V + D - U + E - S			
	Match:			
	AV, BR, CT, DU, ES			
	or	B1	4	Must be 5 pairs
	AR, BT, CV, DU, ES			1
	Tota	1	6	
3(a)		M1		4 numbers (either part)
	8 13 17 26		-	
	= 64	A1	2	
(b)	A D C B A			
	11 18 9 14			
	= 52	A1	1	
(c)	ACBDA	M1		Tour
(0)	6 9 25 26	M1 M1		Visits every vertex
	0 9 25 20	A1		Correct order
	= 66}	B1	4	
	Alternative if matrix used:			
	M1 3 numbers all different rows and columns			
	A1 correct numbers			
	B1 66			
	52 (1 1 1 1 1 1 1 1 1 1	DIE	1	Allow " port (b) "
(d)	52 (their lowest of (a) , (b) , (c))	B1F	1	Allow " part (b) "

Q		Soluti	ion		Marks	Total	Comments
4(a)	Comparis 6 5 4 3 2	ons	Swa 5 3 2 1 0	ps	B1B1 B1B1 B1 B1 B1	6	Other 3 comparisons Other 3 swaps. Ignore 6 th pass
(b)	21 21			Total	B1 B1	2 8	
5(a)(i)	<u>(A)</u> 2	(<i>B</i>) 3	C 0 2 4 6	<u>D</u> 0 3 6	M1 A1 A1	3	SCA: as far as $D = 3$ For 4 All correct
(ii)	<u>(A)</u> 6	(<u>B</u>) 8	C 0 6 12 18 24	D 0 8 16 24	M1 A1 A1	3	SCA: as far as <i>D</i> = 8 For 12 All correct
(b)	Find LCM				B1	1	Allow lowest common denominator
(c)	600			Total	B1	1 8	

Q	Solution	Marks	Total	Comments
6(a)	$1000x + 500y \le 9000$	B1	1	
	$(2x+y\leq 18)$			
(b)	$x \ge 2, \ y \ge 5$ $y \ge 2x$	B1 B1		-1 for strict inequalities
	$y = 2x$ $y \le 3x$	B1 B1	3	$\int -1$ for 'w's and 'l's
(c)	¥1			
	20-	DI		
	18	B1		x = 2, y = 5
		B1		2x + y = 18
	15-	M1		
		M1		Line $y = mx$
	10-	A1		y = 2x
	··· / X	A1		
				y = 3x
	5	B1	6	Feasible region
,				
(d)	Considering an extreme point on their f.r. $x = 4.5$	M1 A1		Extreme point - vertex
	x = 4.5 y = 9	A1 A1	3	
	Total		13	

Q) Solution	Marks	Total	Comments
7(a)(i)	C 130	M1		SCA
	A 15	M1		4 values at <i>I</i>
	S 135 280 (215)	M1		2 values at M
	B 235	M1		2 values at <i>O</i>
	M335	A1		All correct
	315	B1	6	465 at <i>O</i>
	L 485 395 465			
(ii)	CASINO	B1	1	Or ONISAC
(b)(i)	$A \rightarrow M = 255$	B1	1	
(ii)	Odds (<i>C</i> , <i>A</i> , <i>S</i> , <i>M</i>)	M1		РІ
	CA + SM = 270			
	CS + AM = 390			
	CM + AS = 390	A3		(-1 EE)
	Min $2280 + 270$ = 2550	M1	6	2280 + their best pairing SC 2/6 for answer 2550 with no working
		A1	6	T NE 7/6 for answer 7550 with no working

Q	Solution	Marks	Total	Comments
8(a)(i)	2	B1		
		B1	2	OE
(ii)	3	B1		
	V V	B1	2	OE
	\forall			
(iii)	3	B1		
		B1	2	OE SC
	\bigvee			
				OE
				B1(must have number and diagram)
(b)(i)	<i>n</i> is odd	B1	1	
(ii)	3 (only)	B1	1	
		Total	8	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

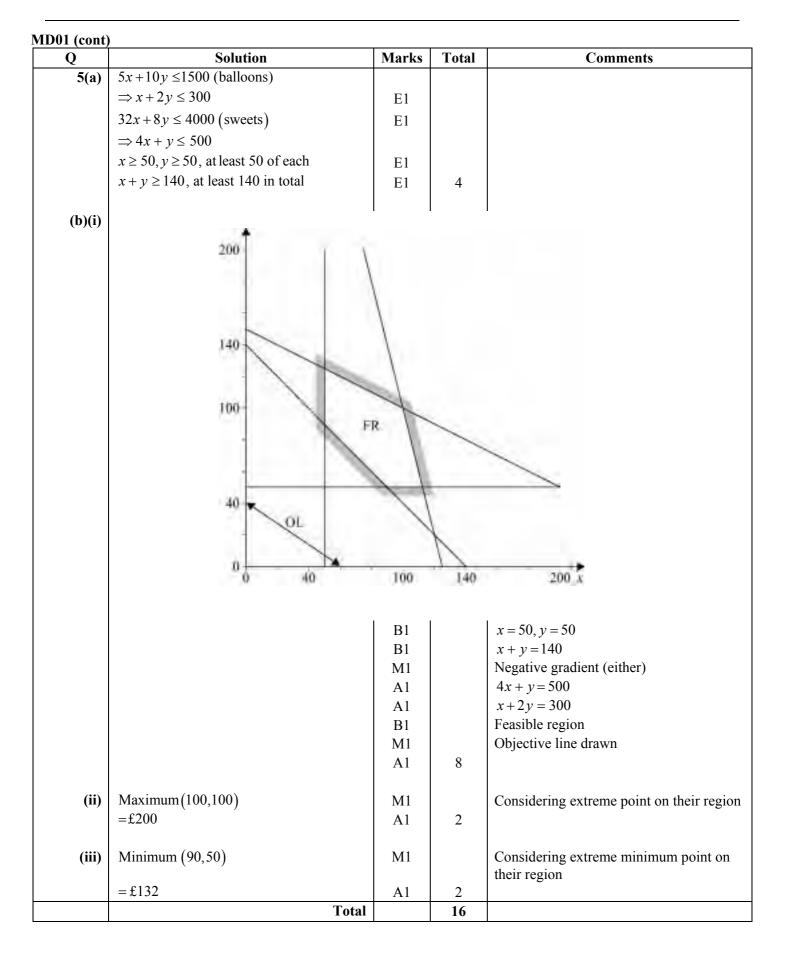
М	mark is for method									
m or dM	mark is dependent on one or more M marks and is for method									
Α	mark is dependent on M or m marks and is for accuracy									
В	mark is independent of M or m marks and is for method and accuracy									
Е	mark is for explanation									
$\sqrt{10}$ or ft or F	follow through from previous									
	incorrect result	MC	mis-copy							
CAO	correct answer only	MR	mis-read							
CSO	correct solution only	RA	required accuracy							
AWFW	anything which falls within	FW	further work							
AWRT	anything which rounds to	ISW	ignore subsequent work							
ACF	any correct form	FIW	from incorrect work							
AG	answer given	BOD	given benefit of doubt							
SC	special case	WR	work replaced by candidate							
OE	or equivalent	FB	formulae book							
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme							
–x EE	deduct x marks for each error	G	graph							
NMS	no method shown	с	candidate							
PI	possibly implied	sf	significant figure(s)							
SCA	substantially correct approach	dp	decimal place(s)							

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.


Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01				1
Q	Solution	Marks	Total	Comments
1(a)		M1 A1	2	
(b)	<i>D</i> can only do 4	E1	1	Cannot be matched to task
(c)	A - 2 + E - 6 + C - 5			Starting with A, D, 5, 1
(0)		M1A1		First pass
	D - 4 + F - 5 + C - 3 + B - 1	M1A1		Second pass
		A1		All Correct Alt:1 $A-4+F-5$
				$\begin{array}{c} A 1 \cdot 1 & A - 4 + T - 3 \\ D - 4 + A - 2 + E - 6 + C - 3 + B - 1 \end{array}$
	Match A2, B1, C3, D4, E6, F5	B1	6	Alt: 2 $D-4+F-5$ A-2+E-6+C-3+B-1
	Total	DI	9	A = 2 + E = 0 + C = 3 + D = 1
2(a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		SCA
	11 22			
	6 20 5 17	M1		4 sublists
		A1		correct 1 st pass
	6 14 20 28			
	5 11 17 22	M1		2 sublists
	6 5 14 11 20 17 28 22 5 6 11 14 17 20 22 28			
	5 6 11 14 17 20 22 28	A1	5	All correct
(b)(i)	4	B1		
(ii)	4	B1	2	
(c)	28	B1	1	
	Total		8	

Q	Sol	lution		Marks	Total	Comments	
3(a)(i)	A.	15	B[15]	10	25 C	15 <u>40</u> D	
	32		12		12	12	
	12 E	20	32 F	g	37	G 20 H 52	
	20		20		20	20	
	[32] 1	14	47	20		15 .72 (56 L.71	
	71		46 J	M1 A1 M1 M1 M1 A1 B1	7	SCA Correct at F 2 values at G 2 values at J 2 values at H All correct	
(a)(i)	OR Working back from 35 at G 47 at C 44 at F 49 at I 56 at B 64 at E 71 at A	L					
(ii)	ABFGKL			B1	1		
(b)	ADL gives 62 AIL gives 69 $\therefore A$ to D			M1 A1 A1	3	OE OE Either, considering routes <i>ADL</i> or CSO	Al
			Total		11		

Q	Solution	Marks	Total	Comments
4(a)(i)	<i>SD</i> 12	M1		Prim's (first 4 edges, allow 1 slip)
-()(-)	SC 13			
	<i>SA</i> 14	B1		12 edges
	<i>SB</i> 16			
	DH 75			
	<i>HG</i> 23	A1		HG 6 th
	<i>GF</i> 22			
	<i>FE</i> 24			
	<i>EI</i> 81	A1		EI 9 th
	<i>IJ</i> 12			
	<i>GK</i> 83			
	<i>KL</i> 16	B1	5	All correct
(ii)	391	B1	1	
(11)	571	DI	1	
(iii)	5	M1		MST $(10 + edges)$
	1 10	A1		12 edges
	B. C.			
		A1	3	All correct
	E = F = G = 1			
	J K L			
(iv)	<i>GF</i> 7 th (22)	B1		
()	$HG 8^{\text{th}} (23)$	B1	2	
			-	
(b)	Odd vertices (E, H, J, K)	E1		PI
	EH + JK = 69 + 131 = (200)	M1		2 correct sets of pairings
	EJ + HK = 93 + 106 = (199)	A3,2,		- concerber of pumps
	EK + JH = 129 + 142 = (271)	1,0		
	Repeat $EJ + HK$	1,0		
	Total $1135 + 199 = 1334$	B1	6	
	100011100 1777 1001	D1	17	

$P \rightarrow A \rightarrow N \rightarrow R \rightarrow G$ 5 115 155 125 160 $1 = 620$ $P \qquad 115 \qquad 155$ $125 \qquad N$	M1 M1 A1 B1 M1 m1 A1	4	Tour Visits all places Correct order SCA (MST + extra edge(s)) MST 2 edges from <i>G</i>
1 = 620	A1 B1 M1 m1 A1	4	Correct order SCA (MST + extra edge(s)) MST
1 = 620	B1 M1 m1 A1	4	SCA (MST + extra edge(s)) MST
P 115 155 125 N	M1 m1 A1	4	MST
135 125 N	m1 A1		MST
135 125 N	m1 A1		MST
125 N	A1		
125 N			2 edges from <i>G</i>
R	m1		2 edges from <i>G</i>
R 100	m1		2 edges from G
100	m1		2 edges from G
ğ			
= 395 + 225 = 620	A1	5	
(20	E1E		Their (a)(ii) $\leq T \leq 4h = ir (a)(i)$
620	EIF		Their (a)(ii) $\leq T \leq$ their (a)(i)
			where $(a)(i) \ge (a)(ii)$
	B1	1	
	B1	1	
	B1	1	
	B1	1	
Total		14	
	620 Total	B1 B1 B1	B1 1 B1 1 B1 1 B1 1 B1 1

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

М	mark is for method								
m or dM	mark is dependent on one or more M marks and is for method								
А	mark is dependent on M or m marks and is for accuracy								
В	mark is independent of M or m marks and is for method and accuracy								
E	mark is for explanation								
$\sqrt{0}$ or ft or F	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only	RA	required accuracy						
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
–x EE	deduct <i>x</i> marks for each error	G	graph						
NMS	no method shown	с	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

D01	~			~
Q	Solution	Marks	Total	Comments
1(a)	A J	M1		Bipartite graph
	В	A1	2	All correct
(b)	D-M(+)E-K	M1		Attempt at path $D - M +$
(~)		A1		
	Match: AN, BJ, CL, DM, EK	B1	3	SC: $K - E + M - D$ B1
2(a)	Total		5	
2(a)	<i>y</i> 40	B1		y = 5, x = 4
		B1		x + y = 30
	30	B1		2x + y = 40
		B1		$y = \frac{1}{2}x$
	20-	B1	5	feasible region CAO
	10			
	$0 \frac{1}{0} 10 20 30 x$			
(b)(i)	Max at $(16, 8) = 56$	M1		Extreme point within $\frac{1}{2}$ square of
		A1	2	their region
(ii)	Max at (4, 26) = 82	M1		Extreme point within $\frac{1}{2}$ square of
		A1	2	their region
	Total		9	

Q	Solution	Marks	Total		Comments
3(a)	DF 1.2	B1		9 edges	
	<i>IH</i> 1.8	M1		SCA	
	<i>BC</i> 2.1				
	<i>AJ</i> or 2.2	A1		$AJ 4^{ m th}$	
	<i>EF</i> 2.4				
	<i>HG</i> 2.6	A1		$HG 6^{th}$	
	GF 2.7				
	AB 2.8				
	JI 2.9	A1	5	All correct	
			-		
(b)	20.7	B1	1		
(-)	A B C D E	M1		MCT some set	ad (7 + adaaa)
(c)		M1	2	MST – connect	ed (7+ edges)
		A1	2		
	J I H G F				
(d)	<i>EF</i> (or 2.4)	M1		for BC, DF, EF	,
(u)	EF (Of 2.4)	A1	2	101 BC, DI', EI'	
	Total		<u> </u>		
(a)(i)	Total		10		
(4)(1)	D				Reverse
	1271				
		M1		SCA	SCA
	15				
	15 10	1			
		m1		3 values at F	2 or 3 values at F
	12^B 16 E				
		m1		2 values at I	1 or 2 values at C
	12 16 37 37 36	1111			1 01 2 values at C
		m1		3 values at J	2 values at A
	E an				
	$0^{A} \underbrace{\begin{array}{c} 30 & 30 \\ 28 & 29 \\ 19 & 10 \\ 5 \\ 48 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46$				
	10 19 10 5 15				
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A1		All correct	
	33	AI			
	10 12 15				
		B1	6	46 at <i>K</i>	
		101	0		
	[<u>20]</u> <i>H</i>				
(ii)	Route ABEIK	B1	1	Allow KIEBA	
(b)		B1		PI	
	AD + KH = 27 + 30 = 57	M1			
	AH + DK = 20 + 20 = 40	A2,1,0			
	AK + DH = 46 + 40 = 86				
	Total: $308 + 40 = 348$	B1	5		
	Total		12		

Q			Solution	l		Marks	Total	Comments
5(a)(i)	40					B1	1	
(ii)	40					B1	1	
(b)	$45 \le T \le$	55				B1	1	
(c)(i)		Α	В	С	D			
	Α	-	20	38	35	B1		3 indep correct
	В	20	-	18	15			
	С	38	18	-	33			
	D	35	15	33	-	B1	2	All correct
(ii)	A B	D C	Α			M1		Tour or visits all
	20 1:	5 33	38 = 106			A1 B1	3	Correct order or their 33
(iii)	A B	D B	C B	A		M1		Any expansion on (c)(ii)
					Total	A1	2 10	Correct

01 (cont) Q			Solı	ition				Marks	Total	Comments
6(a)(i)	А В 1 –6	C 11	D 6	K	Ν	X	Y	M1		SCA Must use at least 3 variables
				1	0					
						1	0	A1		1 st pass
				2	1	2				
					2	Z	0	A1		2 nd pass
				3	2	3				
					3		0	A1	4	All correct
(ii)	A B	<i>C</i>	D	K	Ν	X	Y			
	1 -10	29	-20	1	0					
					0	1	(0)	M1		1 st pass
				2	1					Must use at least 3 variables
						2	6	A1		2 nd pass
				3		3	4	A1		3 rd pass
				4		4	4	AI		5 pass
					2	·	0			
				5		5				
					3		0	A1	4	All correct
(b)		dina	 λ 7	. 3				B1 B1	n	
	Never en	ung	JE IN ≠	- 3			Total	DI	2 10	

MD01 (cont)					
Q		Solution		Marks	Total	Comments
7 (a)	1 – Shu	ttle		B1		For one correct
	2 – She	11		B1		For a second one correct
	3 – Qui					
	4 – Bub	oble		B1	3	For all correct
(b)	Solution	Comparisons	Swaps			
	1	1	1	B1, B1		Tallies: max 6/8
	2	2	1	B1, B1		
	3	3	3	B1, B1		
	4	3	3	B1, B1	8	
			Total		11	
8				M1		Any correct LHS in inequality
	2x + 4y + 3z	$z \leq 360$				
	3x + 2y + 4x	$z \leq 270$		A2,1,0		OE
	x + 3y + 5z	≤450				
)				
	6x + 9y + 12	$z \ge 720$		M1		
	$\Rightarrow 2x + 3y +$			A1		Allow further correct simplification
	,,			111		The with the context simplified on
		2		M1		Must have 3 parts correct
	2x + 4y + 3x	$z \ge \frac{2}{5} (6x + 9y +$	(12z)	A1		Must have 5 parts concer
		5				
	$2y \ge 2x + 9$	z OE		A1	8	Allow further correct simplification
			Total		8	
			TOTAL		75	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

М	mark is for method								
m or dM	mark is dependent on one or more M marks and is for method								
А	mark is dependent on M or m marks and is for accuracy								
В	mark is independent of M or m marks and is for method and accuracy								
E	mark is for explanation								
\sqrt{or} ft or F	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only	RA	required accuracy						
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
–x EE	deduct x marks for each error	G	graph						
NMS	no method shown	с	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

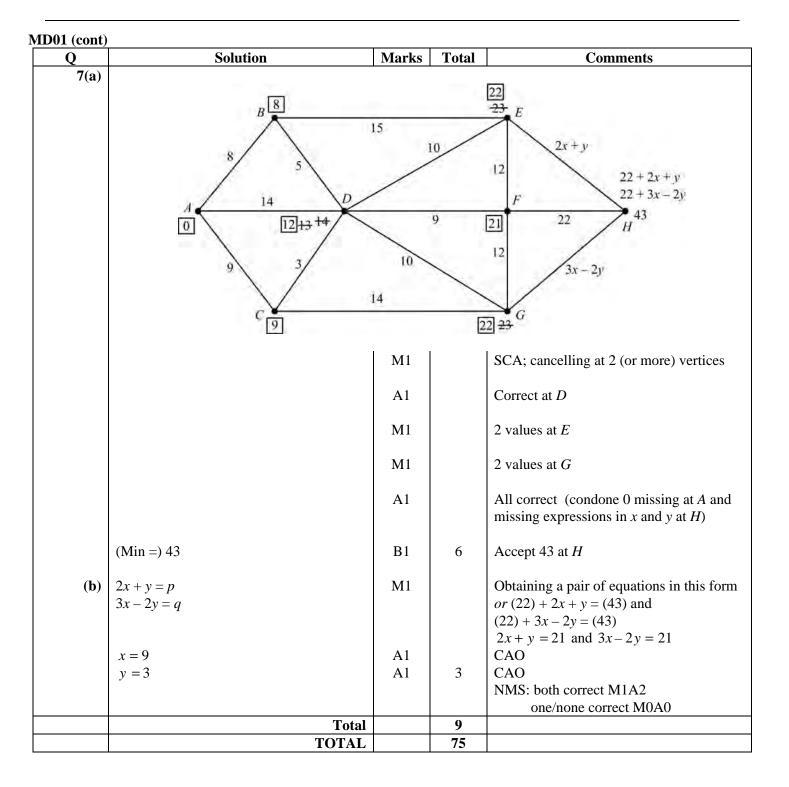
Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01	1			<u> </u>							<i>a i</i>
Q 1(a)				Solu	ution				Marks	Total	Comments
1(a)	$\begin{bmatrix} a \\ b \\ c \\ c$								M1		Bipartite graph: 2 sets of vertices with at least one edge
						- 0			A1	2	All correct
(b)	A3, B	84, <i>C</i> 2	2, <i>E</i> 5								Initial match
	Start from <i>D</i> , <i>F</i> or 1, 6								M1 M1		1st path $\Big $ must go beyond 2nd 2nd path $\Big $ letter/number eg $D - 4$ (+) B/F If working is only on diagram, the path(s) must be clear , and only 1 path per diagram can be credited. If 2 paths shown on one diagram, max
	Accept paths in reverse order D - 4 (+)B - 2 (+) C - 6 F - 5 (+)E - 1 or F - 4(+)B - 2(+)C - 6 D - 4(+)F - 5(+)E - 1 Match: A3, B2, C6, D4, E1, F5								A1 A1		mark M1A1 1st correct path 2nd correct path or F-5(+)E-3(+)A-6 D-4(+)B-2(+)C-6(+)A-3(+)E-1
									B1	5	Must be clearly stated or indicated
								Total		7	
2(a)	<u>P</u>	В	М	N	J	K	R	D	M1		Using quick sort
	<u>B</u>	М	N	J	K	D	Р	<u>R</u>	A1		First pass (based on their pivot)
	В	<u>M</u>	Ν	J	K	D	Р	R			
	В	<u>J</u>	K	D	Μ	<u>N</u>	Р	R	A1		A correct third pass
	В	<u>D</u>	J	<u>K</u>	Μ	Ν	Р	R	A1		All passes correct
									B1	5	Consistent pivots clearly labelled (at least three passes)
(b)(i)	28								B1	1	
(ii)	In rev	verse	order					Total	B1	1 7	Allow descending
L								Total		1	


Q	Solution	Marks	Total	Comments
3(a)(i)	10	B1	1	
(ii)	n-1	B1	1	
(b)	Condone candidates attempting all of part (b) together / in different order			
(i)	AB BC	M1		Using Prim's
	BC BD	A1		BD 3rd
	CF	A1		CF 4th
	DG or FJ			
	GK JK			
	KJ GK			
	KH or KI			
	KI IE			
	EI KH	A1		All correct
		B1	5	10 edges
(ii)	(Length =) 155	B1	1	
(iii)	G			
		M1 A1	2	Spanning tree with at least 8 edges Any cycle scores M0 Correct and labelled Alternative: FJ instead of DG :

MD01	(cont)

MD01 (cont) Q	Solution	Marks	Total	Comments
4(a)(i)	130	B1	1	$\left(\begin{array}{ccccc} T & P & V & B & C & T \\ 8 & 48 & 18 & 43 & 13 \end{array}\right)$
(ii)	<i>T P C B V T</i> 8 18 43 18 51	M1		Tour (vertices or edges) starting from <i>T</i> (Letters not numbers)
		M1		Visits all vertices starting from T
		A1		Correct order
	= 138	B1	4	
(iii)	A possible solution, eg tour	E1		OE
	May be improved on	E1	2	Allow ' can' in this case as (i) $<$ (ii) OE
(b)(i)	$\overset{T}{\bigstar}$	M1		Spanning tree with 3 edges
	PT, CT, PV	A1		Correct
	C•	m1		2 edges from <i>B</i>
	+ 2 shortest from B 43 18 18	A1		Correct
	(Lower bound =) 130	A1	5	CSO
(ii)	May not exist	E1		OE
(11)	Cannot be lowered	E1	2	OE
(c)	T P			
		B1		
	Tour or optimum or same as (a)(i)	E1	2	Lower bound = Upper bound
	Total		16	Contraction of the contraction o

Q	Solution	Marks	Total	Comments
5(a)	Odds A, B, C, D	M1		PI (but A, B, C, D must be mentioned)
		m1		Considering 3 sets of pairings of odd vertices, eg <i>AB</i> with <i>CD</i> etc
	AB + CD = 270 + 270 = 540			
	AC + BD = 290 + 290 = 580	A2,1,0		A1 for 2 correct, A2 for all correct
	AD + BC = 260 + 270 = 530			
	Repeat AD, BC	A1F		Follow through their shortest pairing PI by adding 530 to 1920 Or <i>AEHD</i> or <i>DHEA</i> and <i>BFGC</i> or <i>CGF</i> listed in any route
	(Length = 1920 + 530 =) 2450 (metres)	B1	6	
(b)	Repeats BC	E1		PI by <i>BFGC</i> or <i>CGFB</i> listed in a complete route or adding 270 / subtracti 260
	(Length = 1920 + 270 =) 2190 (metres)	B1	2	2450 – 260 = 2190 (2190 with no evidence scores E0B1)
(c)(i)	Min. repeat AD	E1		PI by <i>AEHD</i> or <i>DHEA</i> listed in a complete route or adding 260 / subtracti 270
	(Length = 1920 + 260 =) 2180 (metres)	B1	2	2450 – 270 = 2180 (2180 with no evidence scores E0B1)
(ii)	<i>B</i> , <i>C</i>	B1	1	Condone start at <i>B</i> , finish at <i>C</i> (or reverse
~ /	Total		11	

Q	Solution	Marks	Total	Comments		
6(a)	All inequalities must be as below					
	$x \leq 100, y \leq 80$	B1		Both		
	$x + y \ge 60$	B1				
	x < y	B1				
	$2x + 8y \ge 320$	B1		OE		
	(minimise $C = 1.5x + 3y$	B1	5			
	(111111111111111111111111111111111111	D1	5			
(b)	y 🛓 👘					
	80					
		D1		x = 100, y = 80 1		
	60 FR	B1		$x = 100, y = 80$ within $\frac{1}{2}$ square		
		$B1 \times 3$		Other lines from $(0,0)$ to $(80,80)$		
	40					
		B1		Feasible Region CAO (must have sco		
		21		B4 for drawing lines)		
	20			(condone $x = y$ as solid line)		
		B1	6	An Objective Line with gradient -0.5		
	0 20 40 60 80 100 x	21	U			
	ŎL.					
(c)	Considering an extreme point in their	M1				
	region					
	Min at intersect of $x + y = 60$			PI by indication on diagram or		
	x + 4y = 160	A1				
				$x = 26\frac{2}{3}$ $y = 33\frac{1}{3}$		
	Considering a pair of integer values where	MI				
	$26 \leqslant x \leqslant 28, 32 \leqslant y \leqslant 34$	M1				
	(C =) £141 at (26, 34)	Δ 1	4			
	or £141 at (28, 33)	A1	4			
	Total		15			

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations	s used in marking
--------------------------------------	-------------------

Μ	mark is for method								
m or dM	mark is dependent on one or more M marks and is for method								
А	mark is dependent on M or m marks and is for accuracy								
В	mark is independent of M or m marks and is for method and accuracy								
E	mark is for explanation								
	1								
$\sqrt{10}$ or ft or F	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only	RA	required accuracy						
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
–x EE	deduct <i>x</i> marks for each error	G	graph						
NMS	no method shown	с	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01				
Q	Solution	Marks	Total	Comments
1 (a)	GH (5) GE (7)	M1		SCA allow Prim's from any vertex but not Kruskal or path – min of 8 edges
	$ \begin{array}{ccc} GE & (7) \\ HJ & (8) \\ BE & (10) \end{array} $	B1 A1		10 edges HJ 3rd
	<i>BD</i> (11) <i>IH</i> (14)	A1		BE 4th
	$ \begin{array}{cccc} DC & (15) \\ AC & (6) \\ FJ & (19) \end{array} $	A1		AC 8th
	<i>HK</i> (22)	A1	6	All correct
(b)	117	B1	1	
(c)		M1		MST (8+ edges)
		A1		10 edges
		A1	3	All correct (+ vertices labelled)
	(Possibly shown in part (a))			
	Total		10	
2(a)	Labelled 6×6 matrix with '1's 1 2 3 4 5 6	M1		Must have '1's not ' \checkmark 's Or A B C D E F
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$F \mid 0 0 0 0 1 0$	A1	2	6 0 0 0 1 0 0 OE Must have '0's not '-'s or blank
(b)		M1		A - 2 + C or $3 - B + 1$
	A - 2 + C - 1 + B - 3	A1		
	F - 5 + E - 4 + D - 6	M1 A1		F - 5 + E or $6 - D + 4$
	Match: A2, C1, B3, F5, E4, D6	B1	5	If working on diagram: Only one path on each half M1A1M1A1 as above – start point must be shown, otherwise M0
	Total		7	

Q) Solution	Marks	Total	Comments								
Q 3(a)(i)	$6 c + \frac{12}{12} + \frac{12}{10} + \frac{12}{12} + \frac{12}{10} $											
				E [7]								
		M1 A1 m1 A1 m1 A1	6	Cancelling at at least 2 vertices Correct at F 2 different values at B Correct at G – depends only on M1 4 different values at H All correct – no extra values								
	Alternative if working from <i>H</i> : $H[0], A[10], B \ge 3 \ 21], F \ge 5 \ 24], C[29],$ $D \ge 6 \ (\ge 5) \ 34], G[20], E \ge 30 \ 29 \ 27]$	(M1) (A1) (m1)		SCA Correct at <i>B</i> 2 values at <i>F</i>								
		(A1) (m1) (A1)		Correct at <i>E</i> 2 or 3 values at <i>D</i> All correct								
(ii)	Route: DEFBAH	B1	1	Or reverse								
(b)(i)	24	B1	1									
(ii)	(Odds) A, C, D, G only AC + DG = 19 + 15 or 34 AD + CG = 24 + 10 or 34 AG + CD = 19 + 6 or 25	E1 M1 A2,1,0		PI 3 sets of pairs								
	(Repeat $AG + CD$) Length = $25 + 167$ = 192	A1F B1	6	167 + their shortest pairing								
	Tota		14									

4(a)	$x + y + z \ge 110$	B1		-1 for strict inequalities (max)
		B1		-1 for using g, p, s instead of x, y, z (max)
	$y \ge x$	B1		
	$y + z \le 150$	B1		
	$16x + 8y + 24z \le 3120 \qquad \text{ISW} (2x + y + 3z \le 390)$	B1		
	(P =) 70x + 30y + 50z	B1	5	
(b)(i)	z = 30 $x + y \ge 80$ (or $x + y + 30 \ge 110$)	M1		Justify by correctly substituting into a least one of their inequalities
	$(y \ge x)$ y ≤ 120 (or y+30 ≤ 150)			
	$2x + y \le 300$ (or $2x + y + 90 \le 390$ OE) ($P = 70x + 30y + 1500$)	A1	2	Correctly substituting into all 3 inequalities AG
(ii)	^y 1	B1		y = 120
	140	B1		x + y = 80
	100	B1		y = x, correct at (40, 40) and (100, 10)
	FR 80	M1		2x + y = 300, -ve gradient with one correct point in the interval $80 \le x \le 12$
	60	A1		Correct at (100, 100) and (90, 120)
	40 01	B1		Correct region labelled
	20	M1		OL: gradient of $-\frac{7}{3}$ or $-\frac{3}{7}$
	0 20 40 60 80 100 120 x	A1	8	Gradient = $-\frac{7}{3}$
(iii)	Considering (90, 120) and/or (100, 100) (£) 11500	M1 A1		Ignore other points being considered
	100 goats, 100 pigs, 30 sheep	A1	3	CAO

AD01 (cont)			<u>a -</u>					m • •	a
Q				Solu	tion			Marks	Total	Comments
5	A B 1 3	$C \\ 0$	D	Ε	F	G	Н			Condone equivalent fractions
	3	7	1	2	0	1.5	2.25	M1 A1 M1		SCA – finding a value for G 1st pass G, H correct 2nd pass – finding a new value for C
	7 7 17	17	2	5	5	1.4	1.96	A1 M1		All correct on pass 3rd pass $C = 17$ or their (2 <i>B</i> + <i>A</i>)
	$\left(\sqrt{2} \text{ is }\right)$	appro	5 oxima	12 ately	$\left(\frac{17}{12}\right)$	1.416	2.007	A1	6	AWRT 1.417 All correct (allow 2.005 to 2.008) and no further passes
					/		Total		6	
6(a)	Min MS = 8 + 10		+ 11	= 39)			M1 A1	2	4 edges
(b)	Max MS	ST = = 0		7 +1	7 +18	8		M1 A1	2	8 + 18 + 2 others
(c)			<	1/8	10/))		M1		Connected graph with 5 vertices (all edges numbered, from G)
	1				11			A1		MST = 53 8, 11, 17, 17 or 8, 10, 17, 18
	17	+	1	7	ł	13		A1	3	other edges OE (other possibilities not shown)
		1	-	18	/					(all edges numbered, from G)

Q	Solution		Marks	Total	Comments
7(a)(i)	2x - 4 < x + 6		M1		2x - 4 <
	$\therefore x < 10$	CSO	A1	2	AG
(ii)	2x - 4 < 3x - 7 OE		B1		Allow any expression in matrix > 0
	2x - 4 < 4x - 14 OE		B1	2	Allow any expression in matrix > 0
	$\begin{pmatrix} =x > 3\\ x > 5 \end{pmatrix}$				
(b)(i)	2 <i>x</i> -1<		M1		Condone \leq for method mark only
	2x - 1 < 3x - 7		A1		
	2x - 1 < x + 8		A1	3	
(ii)	\Rightarrow (x > 6)				
	<i>x</i> < 9		B1		Possibly earned in (b)(i)
	2x - 2 < 3x - 9		M1		Condone \leq for method mark only
	<i>x</i> > 7		A1		
	<i>x</i> = 8		B1	4	
(iii)	A C D E B A				
	12 15 14 17 14		M1		8x + 8 with their integer x
	= 72		A1	2	CAO (unsupported 72 scores M0A0)
		Total		13	
		TOTAL		75	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method								
m or dM	mark is dependent on one or more M marks and is for method								
А	mark is dependent on M or m marks and is for accuracy								
В	mark is independent of M or m marks and is for method and accuracy								
Е	mark is for explanation								
or ft or F	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only RA required accuracy								
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
–x EE	deduct x marks for each error	G	graph						
NMS	no method shown	c	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

~			T (1	2					
Q 1(a)	Solution	Marks	Total	Comments					
		M1 A1	2	Bipartite graph, 2 sets of (some) vertices labelled, 6+ edges					
(b)	A3, B4, C2, E5								
	D-4+B, $6-C+2$, $6-E+5$	M1		1 correct					
	F - 5 + E, $1 - A + 3$, $F - 4 + B$	M1		1 correct					
	D - 4 + B - 2 + C - 6	A1		Or reverse					
	F - 5 + E - 3 + A - 1	A1		Or reverse					
	ignore extra paths attempted								
	OR								
	F - 4 + B - 2 + C - 6	(A1)		Or reverse					
	D - 4 + F - 5 + E - 3 + A - 1	(A1)		Or reverse					
	ignore extra paths attempted	`							
	A1, B2, C6, D4, E3, F5	B1	5	Must be list, not diagram					
	Watch for correct method using unus	ual notation							
	One continuous path scores M1A1M0 eg $D-4+B-2+C-6+F-5+E-3+$								
	If working on diagram(s) only then max M1A0 M1A0 for each M1: must have start point labelled and a clear path (numerically labelled or coloured) of at left to right to left (or reverse)								
	Tot	al	7						

MD01 (cont))					
Q			Solution	Marks	Total	Comments
2	1 st	C 1	<u>S</u> 0			
	2^{nd}	1 2	2	B6 (B5)	6	All 12 correct 10 correct
	3 rd	1	0	(B4) (B3)		8 correct 7 correct
	4 th	4	3	(B2) (B1)		6 correct 5 correct
	5 th	1	0			Tallies can only score max B2 for three 1s and three 0s (not blanks)
	6 th	6	6			
			Tota		6	
3(a)(i)	9			B1	1	
(ii)	n - 1			B1	1	
(b)(i)	EF BC CG JI BI	8 8.5 10 11.5 12		M1 A1		SCA minimum spanning tree, 7+ edges (not cycles), must be in ascending order and edges required (not lengths alone) $BC 2^{nd}$
	AB GE	12 14 16		A1		JI 4 th
	CH DE	16.5 21	J	B1		9 edges (not lengths alone) – may be earned in (b)(iii)
				A1	5	All correct
(ii)	117.5			B1	1	
(iii)	• •	8		M1 A1	2	7+ edges, minimum spanning tree Correct, including labelling
			Tota	ıl	10	

Q	Solution		Marks	Total	Co	mments	
4(a)	Odds B, C, H, F		E1		PI (must be these 4	vertices - CAO)	
	BC + HF = 160 + 320 or 4 BH + CF = 280 + 520 or 8 BF + CH = 360 + 210 or 5	300	M1 A2,1,0		3 sets of pairs A2 for all 3 correct, A1 for 2 correct		
	(Total =)(2410 + 480) = 2890		A1F B1	6	2410 + their shorte SC 2890 with no one route listed sco Route listed not 28	working or 2890 with pres 2/6	
(b)	4 80	80	C ⁽⁰⁾ 2	0	H ^[210] 130	P 340	
				-			
	80	250	·		120	200	
	(160) B •	80 /	240 250 8	0	N 330 200		
	90	170			130	150	
	[250]		400	_	450	510	
	G	150 4	1	70	E 60	T	
			M1	10	SCA; cancelling re	equired at I or N	
			m1		2 values at <i>I</i>		
			m1		2 values at <i>M</i>		
			m1		2 values at <i>N</i>		
			A1		All correct – no ex Condone 520 boxe final values at each	ed at F and condone	
			B1		510 at <i>T</i> (diagram answer book)	takes precedence ove	
	Route CABINET		B1	7	Or reverse		
		Tot	al	13			

Q	Solution		Marks	Total	Comments
5(a)	eg ABCDEFA		M1 A1	2	Any tour <i>ABA</i> or better, any start vertex but not revisiting a vertex May be shown in a labelled diagram of a cycle (eg triangle <i>ABC</i>) With all vertices visited May be shown in a labelled diagram of a cycle
(b)(i)	(20) (15) (5) (25) (15) (15)	AG	M1 m1 A1	3	Any tour, start/finish at <i>F</i> Visits all vertices Correct order If solution shown solely on matrix, then order of selection of vertices must be shown
(ii)	Tour		E1		"It's an answer", "a cycle", "it works", "it's possible"
	<u>May</u> be improved on		E1	2	"Can't be worse", "not necessarily best", "could be improved" Not "can be improved"
(c)	F E C A B D F		M1		Tour <i>FE</i> (<i>ABCD</i> in any order with <i>B</i> before <i>D</i>) <i>F</i>
	(30) (7) (5) (25) (11) (10)		A1		Correct order
	= 88		B1	3	If solution shown solely on matrix, order of selection of vertices must be shown
		Total		10	

Q	Solution	Marks	Total	Comments
6				Working must be in <i>x</i> , <i>y</i> and <i>z</i> Equalities can only score M marks
(a)	$6x + 4y + 2z \le 240$	M1		Strict inequalities: –1 first error only
(<i>a</i>)	$3x + 2y + z \le 120$	A1		САО
	$6x + 3y + 9z \le 300$	M1		
	$2x + y + 3z \le 100$	A1		CAO
	$12x + 18y + 6z \le 900$	M1		
	$2x + 3y + z \le 150$	A1		САО
	$12x + 18y + 6z \ge 2(6x + 3y + 9z)$	M1		OE
	$y \ge z$	A1	8	CSO ; OE in simplified form eg $y - z \ge 0$
(b)(i)	(z=x)			
()()	$4x + 2y \le 120$ OE or $3x + 3y \le 150$ OE	M1		Correct unsimplified subst $x = z$ into
	$4x + 2y \le 120$ OE $\Rightarrow 2x + y \le 60$ AG	1011		either of these 2 correct inequs. (seen)
	$3x+3y \le 150 \text{ OE} \implies x+y \le 50 \text{ AG}$	A1		Both correct and simplified
	$5x + y \le 100$, $y \ge x$ AG	A1	3	Correct subst $x = z$ into 4 correct inequs.
(ii)				
		B1 B1 B1 B1		Line 1 correct at (0, 50) (25, 25) Line 2 correct at (10, 50) (20, 0) Line 3 correct at (0, 60) (30, 0) Line 4 correct at (0, 0) (25, 25)
				Each line correct to $\frac{1}{2}$ square, horizontally or vertically
	FR		_	
		B1	5	FR, must have all lines correct and labelled region (condone no shading)
		M1		Stated or PI
(iii)	N = x + y + z = 2x + y Max = 60	A1	2	CSO; SC unsupported 60 scores 2/2
(iv)	10, 40, 10	B1		Any correct; may be earned in part (iii)
. /	11, 38, 11			
	12, 36, 12 13, 34, 13	B1 B1	3	3 correct 4 correct and no extras
	Total		21	

MD01 (cont				
Q	Solution	Marks	Total	Comments
7(a)(i)		B1	1	OE
(ii)		M1		4 edges
		Al	2	OE
(iii)				Note: new edges must meet each square at vertices on the opposite ends of a side of the square eg ✓ ×
		M1		4 edges
		A1	2	Eulerian (all vertices are of even order)
(b)(i)	<i>n</i> odd	B1	1	$(n \pm 1)$ even
(ii)	(Triangle) $n = 3$	B2	2	Triangle, stated or drawn, scores B1
	Total		8	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

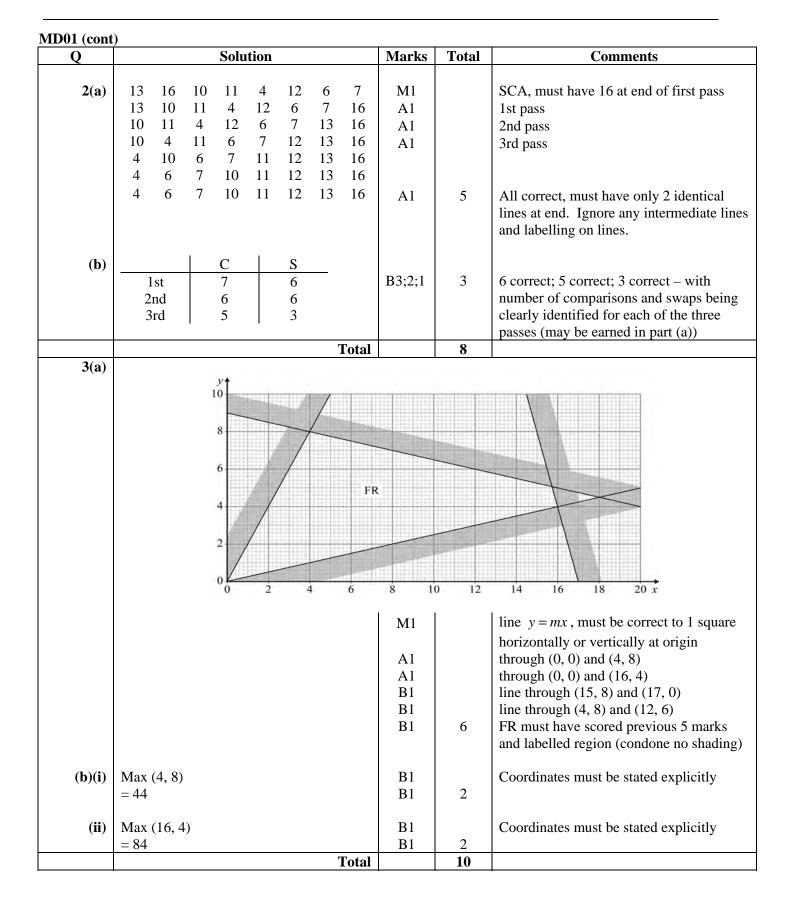
The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

М	mark is for method								
m or dM	mark is dependent on one or more M marks and is for method								
А	mark is dependent on M or m marks and is for accuracy								
В	mark is independent of M or m marks and is for method and accuracy								
Е	mark is for explanation								
or ft or F	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only RA required accuracy								
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
–x EE	deduct x marks for each error	G	graph						
NMS	no method shown	с	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						
		-	_						

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.


Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

<u>1D01</u>	C - 14 ²	Maalaa	T-4-1	Commenter to
$\frac{\mathbf{Q}}{\mathbf{I}(\mathbf{a})}$	Solution	Marks	Total	Comments
1(a)		M1 A1	2	Bipartite graph, 2 sets of (some) vertices, labelled, 6+ edges
(b)	AP, BR, CN, ES			
	$D-R \neq B$ $V-C \neq N$ $M-A \neq P$	M1		1 correct
	$F-R \neq B$ $D-S \neq E$ $V-E \neq S$	M1		1 correct
		M1		2^{nd} path started correctly, must be different start point from 1^{st} path (allow F - R + D for 2^{nd} M1 if D - R + B first)
	$D-R \neq B-N \neq C-V$	A1		or reverse
	F - R + D - S + E - P + A - M	A1 A1		or reverse, but two paths must be in this order
	OR Decision V			
	$D-S \neq E-V$ F-R + B-N + C-V + E-P + A-	(A1)		or reverse
	$\mathbf{F} - \mathbf{K} \neq \mathbf{B} - \mathbf{N} \neq \mathbf{C} - \mathbf{V} \neq \mathbf{E} - \mathbf{P} \neq \mathbf{A} - \mathbf{M}$	(A1)		or reverse, but two paths must be in this order
	OR E. D. (D. N. (C. V.	(A 1)		
	F - R + B - N + C - V $D - S + E - P + A - M$	(A1) (A1)		or reverse or reverse, the two paths can be in either
		(71)		order
	AM, BN, CV, DS, EP, FR	B1	5	Must be written as a list
	Total		7	

Q	Solution	Marks	Total	Comments
4(a)(i)	AC 13	M1		Use of Prim's (not Kruskal's and not
	<i>AE</i> 14			path); 6+ edges (no cycles); edges, not
	<i>EI</i> 15			lengths or vertices, with first 2 edges
	<i>CD</i> 16			correct
	СН 20	B1		8 edges
	<i>EF</i> 21	A1		CH 5th
	<i>FB</i> 19	A1		EF 6th
	<i>BG</i> 19	A1	5	All correct
(ii)	137	B1	1	
(iii)	G			
	F A C	M1		6+ edges, no cycles
		A1	2	Correct, including labelling
(b)	(Odds) <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i>	E1		PI CAO
	BC + DE = 22 + 18 (or 40)	M1		3 correct sets of pairs (lettered)
	BD + CE = 38 + 27 (or 65)			
	BE + CD = 22 + 16 (or 38)	A2;1		3 correct sets of numbers; 2 correct sets of numbers
	$\min = 307 + 38$	A1F		PI 307 plus their shortest
	=345	B1	6	
			-	SC:
				345 with no M mark scored scores 2/last Route without 345 scores 0/last 5
		otal	14	

MD01 (cont Q	Solution							Marks	Total	Comments	
$\frac{\nabla}{5(a)}$	(<i>B</i>					1110115	I Utal	Com			
5(u)	(D	L	C	D	71	12(.0)		B1	1		
(b)	В	D	Α	С	Ε	В		M1 m1		Tour starts/finishes at <i>B</i> Visits <i>B</i> twice and	If solution only on a matrix, then order of selection of
					=	= 13.5		A1 B1	4	all other vertices once Correct order	vertices must be clearly shown
(c)	12(.0))						B1F	1	Their min, condone v	writing 'part (a)' ft
(d)	В	A	D	Ε	С	В		M1		Tour starts/finishes	If solution only on
								m1		at <i>B</i> Visits <i>B</i> twice and all other vertices	a matrix, then order of selection of vertices must be clearly shown
					=	= 12.1		A1 B1	4	once Correct order	clearly shown
							Total		10		
6(a)	(A) (1)	(<i>B</i>) (5)	(<i>N</i>) (2)	<u>Т</u> 0	D 1	<i>H</i>	E	M1		SCA trace as far as a with at least 1 value :	second value for <i>T</i> for all other variables
				126		_	1	A1		<i>T</i> = 126	
				180	3 5			m1		T = (180) trace as far and 2 values for D	as a third value for T
	("Are	a =")	180					A1	4	All correct values ind 180 and no extra values <i>B</i> , <i>N</i> and their values	
(b)	(A) (1)	(<i>B</i>) (5)	(<i>N</i>) (4)	T 0	D 1	H	E	M1		SCA as above	
				126		1	0.5				
				126 142	2			A1		<i>T</i> = 142	
				196 324	4			m1		T = (324) 5 values for	r T
	("Are	 a =")	 162		5			A1	4	All correct values ind 162 and no extra values <i>B</i> , <i>N</i> and their values	
							Total		8		-, -, -, -
							Iotai	ļ	0	<u> </u>	

<u>001 (cont</u> Q	Solution	Marks	Total	Comments
7 (a)				•
		E 25 2	:4	
	20/	$\langle \rangle$	20	
		9	120	
	5 B	F 15		1 27
	10		12	
	5 4	4	18	23
	10 C	G		K = 20 (28 + 3x + y)
	4 10 12	20	x + y	$\begin{array}{c} \frac{n}{18+x+y} \\ \hline 18+x+y \\ 50 \end{array} \qquad $
		18 2	17	
	0			3x + w
	6 p 10	H 16	12	L [28]
		0	/	20
	20		20	
		\mathbf{V}		
		126 2	5	
		M1	l	SCA cancelling at C (PI)
		A1		Correct values at <i>C</i>
		m1		3 values at <i>G</i>
		A1		Correct values at G
		m1		2 values at both <i>E</i> and <i>I</i>
		A1		All correct, with no extra values, and
		D1	7	including $18 + x + y$ boxed at K
		B1	/	50 at <i>M</i> (diagram takes precedence over answer book)
(b)	3x + y (=22) OE	M1		setting up simultaneous equations
	x + y (=12) OE			
	$\therefore x=5, y=7$	A1+1	3	CSO
			-	SC $x = 5$, $y = 7$ with no working $3/3$
	Tota	ıl	10	
8				
	$3x + y + 5z \le 300$	B2,1,0		
	$4x + 3y + 2z \le 400$,.,		
	2x+3y+4z(>)3x+y+5z	MI		Their A (>) their P
		M1		Their A (>) their B
	2y > x + z	A1		OE
	$5x + 4y + 9z (\ge) 4x + 3y + 2z$	M1		Their A + B (\geq) their C
	$x + y + 7z \ge 0$	A1		OE
	$4x + 3y + 2z (\ge) \frac{40}{100} (9x + 7y + 11z)$	M1		Their C (\geq) 40% of their total OE
			1	
	100	Δ1	R	OF
	$2x + y \ge 12z$ Tota	A1	8 8	OE

Version 1.0

General Certificate of Education June 2010

Mathematics

MD01

Decision 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
А	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy							
E	mark is for explanation							
$\sqrt{0}$ or ft or F	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
–x EE	deduct <i>x</i> marks for each error	G	graph					
NMS	no method shown	с	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

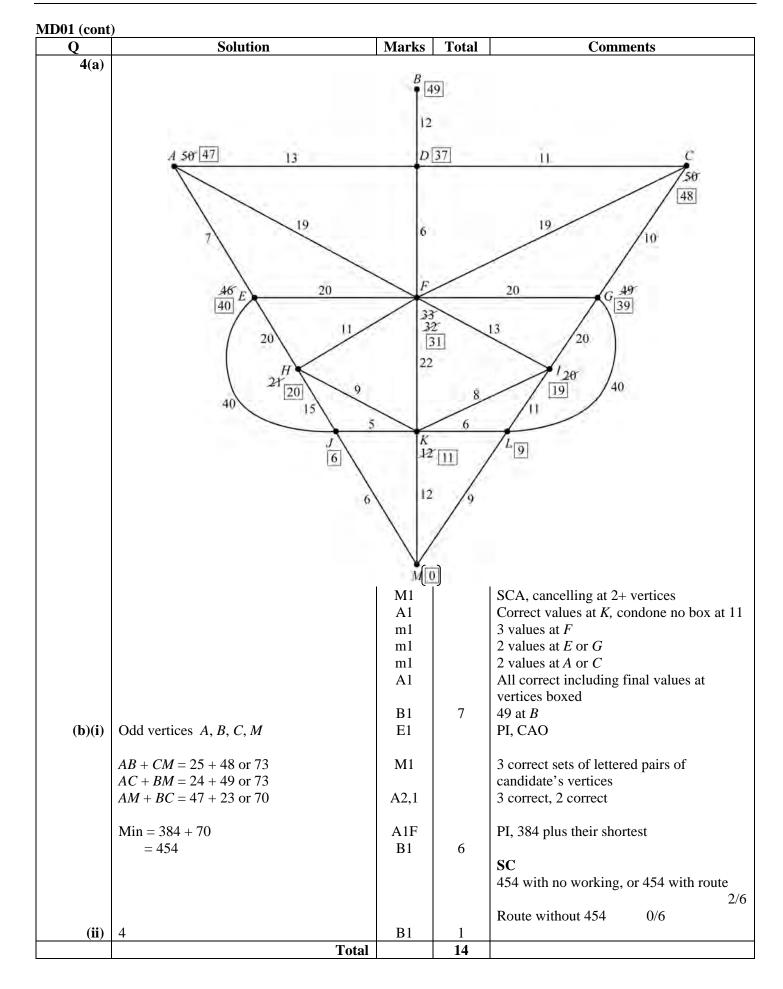
No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.


Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	A B C C C D C	M1 A1	2	Bipartite graph, 2 sets of (some) vertices labelled, 6+ edges. All correct
(b)	3 letters matched to 2 numbers impossible or2 letters matched to 3 numbers impossible	E1		OE; PI by subsequent E1
	A, D, E matched to 1, 5 impossible or B, C matched to 2, 3, 4 impossible	E1	2	OE
	Total		4	

MD01 (cont)

Q)			lution		Marks	Total	Comments
2(a)(i)	(6	2	3	5	4)			
	2	3	5	4	6	M1		Bubble, condone 1 slip but must have 6 at end of first pass
						A1		1st pass correct
	2	3	4	5	6			
	2	3	4	5	6	A1	3	All correct, these 3 lines only
		verse:						
	(6	2	3 3	5 4	4)			
	2	6	3	4	5	M1		Bubble, condone 1 slip but must have 2 at start of 1st pass
						A1		1st pass correct
	2	3	6	4	5			
	2 2	3	4	6	5			
	2	3	4	5	6	A1		All correct these 4 lines only
								NOTE
								(6 2 3 5 4)
								$\begin{array}{cccccccccccccccccccccccccccccccccccc$
								2 3 5 4 6
								2 3 4 5 6
								scores M0
(ii)	4					B1	1	
(b)(i)	(<u>6</u>	2	3 <u>3</u>	5 5	4)			
	2	6	3	5	4	M1		Shuttle – swap 2 and 6 only on 1st pass
	2	3	6	5	4	A1		2nd pass
	$\frac{2}{2}$	3	5	6	<u>4</u> 6	A1		3rd pass
	2	3	4	5	6	A1	4	All correct
(ii)	1					B1	1	
					Total		9	

Q	Solution	Marks	Total	Comments
3(a)	$ \begin{array}{ccc} HI & 6\\ DE & 8\\ IJ & 9 \end{array} $	M1		Kruskal's, 6 + edges stated, not just lengths, (no cycles) must be in ascending order (condone 1 slip only)
	<i>IG</i> 11 <i>AB</i> 12	B1		9 edges
	CG 14 BF 16 DE 17	A1		IJ 3rd
	$ \begin{array}{ccc} BE & 17 \\ FI & 19 \end{array} $	A1		AB 5th
		A1		BF 7th
		A1	6	All correct
(b)	112 A B C	B1	1	
(c)		M1		tree 7+ edges
		A1	_	9 edges
	"	A1	3	All correct , including labelling
(d)	CG	B1	1	
(4)	Total		11	

MD01 (cont)

Q	Solution	Marks	Total	Comments
5(a)	STRINGS	M1		Tour starting from any vertex
	64 70 82 80 82 72	m1		Visits all other vertices only once
	450	A1	4	Correct order
	= 450	B1	4	Note: If solution on a matrix then order of
				selection of vertices must be clearly
				shown
(b)		B1F	1	Must have scored M2 in part (a)
	Or reverse			
	Delete S	M1		Clear mathed, spanning tree (adapt on
(c)	Defete 5	IVI I		Clear method: spanning tree (edges or diagram, not just numbers) with one
				vertex deleted AND adding 2 edges from
				deleted vertex (condone double shortest
				edge from deleted vertex)
	G			
	1			
	76 73	B1		Spanning tree with 4 edges (may include
	74 N	DI		S)
	T			,
	70	A1		Correct MST
	R			
	+			
	T			
	64 /68	A1F		2 shortest from candidate's deleted vertex
				(not shortest edge doubled)
	\setminus			
	¥ s			
	= 425	A1	5	SC 425 without earning first M1: 2/5
	Total		10	

MD01 (cont)

Q	Solution	Marks	Total	Comments
6 (a)	$x \ge 190, y \ge 50, z \ge 50$ oe	B1		
	$x + y + z \ge 300 \qquad \qquad \text{oe}$	B1		
	$2.5x + 2y + 2z \le 1000$ oe	B1		Strict inequalities: penalise first two
	$(5x+4y+4z \le 2000)$			instances only
	$x \ge \frac{60}{100} \left(x + y + z \right) \qquad \text{oe}$	B1)	4	
	$(2x \ge 3y + 3z)$			
(b)(i)	y = z $x \ge 190, y \ge 50$			$x + y + y \ge 300 \text{ or } 5x + 4y + 4y \le 2000$
	$x + 2y \ge 300 \qquad \qquad \text{oe}$	M1		$x + y + y \ge 500 \text{ of } 5x + 4y + 4y \le 2000$ or $2x \ge 3y + 3y$
	$5x + 8y \le 2000$			ie at least one clear line of working
				showing substitution of $y = z$
	$2x \ge 6y$			
	$\left(y \le \frac{1}{3}x\right) \qquad \qquad \text{oe}$	A1	2	AG All correct (3 'or' become 'and')
(ii)	300			
	500			
	250			
	230			
	200			
	150			
	100			
			X	
	50 OL	\times	FR	
	0			
	0 50 100 150	200	250	300 350 400 450 x
				For all lines must be correct to $\frac{1}{2}$ square
		B1		horizontal or vertical $x = 190, y = 50$
		B1 B1		through $(0,150)$ and $(300,0)$
		B1		through (0,250) and (400,0)
		M1		y = mx through (0,0)
		A1 B1		through (300,100) Region must have all lines correct and
		B1 B1	7	Region must have all lines correct and labelled region (condone lack of shading) A correct objective line

Q	Solution	Marks	Total	Comments
6 (b)(iii)	$P = \frac{1}{2}x + \frac{1}{4}y + \frac{1}{4}z \text{ or } \frac{1}{2}x + \frac{1}{2}y$	M1		Ы
	Max at (320,50)	B1		
	Profit $(160 + 25) = \pounds 185$	A1		Note: (with no working) £185 $3/4$
	Buys 320 slow, 50 medium, 50 fast	B1	4	320 slow, 50 medium, 50 fast 2/4 320 slow, 50 medium, 50 fast and £185 4/4
	Total		17	

MD01 (cont)

Q			Solu	tion		Marks	Total	Comments
7								
	Α	В	С	D	E			
	(1	4	0	4	0)			8
	2	4	4	8	0.22404	M1		1st pass to candidate's $\frac{8}{3}$
	3	-4	$-\frac{4}{3}$	$\frac{8}{3}$	444	Δ 1		2
			(awrt	(awrt	(awrt	A1		1st pass all correct to $E = 0.22$
			-1.33)	2.67)	0.22)			52
			4	50	0.10(71	M1		2nd pass to candidate's $\frac{52}{15}$
	5	4	$\frac{4}{5}$	$\frac{52}{15}$	0.10671	A1		2nd pass correct to $E = 0.11$
			5		111 (awrt			
				(awrt 3.5)	(awit 0.11)			
				/	,	M1		3rd pass to candidate's $\frac{304}{105}$
	_		-4	304	0.0.700			105
	7	-4	7	105	0.0599			
			(awrt	(awrt	(awrt			
			-0.571)	2.9)	0.06)			
			4	1050				
	9	4	$\frac{4}{9}$	$\frac{1052}{315}$	0.03987			
			9	315				
			(awrt 0.444)	(awrt 3.34)	(awrt 0.04)	A1	6	All correct and no extra line
	1	I	0.777/	5.54)	0.01)			Final answer $\frac{1052}{217}$ or awrt 3.34
	π is a	pproxi	imately 3.	34				315 of unit 5.51
		T F		-	Total		6	

MD01 (cont)

Q	Solution	Marks	Total	Comments
8 (a)	Max 5	B1		
	Min 1	B1	2	Do not allow 1° or 5°
(b)	$4x - 12 \ge 1 \text{ (or } >0)$ $\left(x \ge \frac{13}{4}\right)$ Or $4x - 12 \le 5 \text{ (or } <6)$ $\left(x \le \frac{17}{4}\right)$ Or $2x - 4 \le 5 \text{ (or } <6)$ $x \le \frac{9}{2}$	M1		Any one of these inequalities OR Exhaustive check of all values from 1 to 5 inclusive, condone one omission.
	x = 4	A1	2	First inequality and one of the other two, or completely correct exhaustive check, and $x = 4$
	Alternative solution Sum of degrees = $11x - 24$ must be even $\Rightarrow x$ is even			
	$x - 2 > 0 \Longrightarrow x > 2$	M1		
	$x \le 5$ Hence $x = 4$	A1		
	Total		4	
	TOTAL		75	

Version1.0

General Certificate of Education (A-level) January 2011

Mathematics

MD01

(Specification 6360)

Decision 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
$\surd or$ ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Mark Scheme – General Certificate of Education (A-level) Mathematics – Decision 1 – January 2011
--

MD01				
Q	Solution	Marks	Total	Comments
1(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		(6×6) matrix labelled with some \sqrt{s} or $\times s$ or 0's or 1's or $-s$
	$F \mid 1 0 1 0 1 0$	A1	2	CAO
(b)		M1		1 correct
	$ \begin{array}{c} A-5+B\\ C-4+E\\ 6-D+2\\ 6-B+5\\ 1-F+3 \end{array} $	M1		1 correct, from a different start point
	A-5+B-3+F-1 C-4+E-2+D-6 or first	A1 A1		Either order
	A - 4 + E - 2 + D - 6 then C - 4 + A - 5 + B - 3 + F - 1 or	(A1) (A1)		Must be in this order
	first A-5+B-6 then C-4+E-2+D-6+B-3+F-1	(A1) (A1)		Must be in this order
	Match A5, B3, C4, D6, E2, F1 Total	B1	5 7	Must be stated (not solely on diagram)

MD01 (cont			·	<u>·</u>
Q	Solution	Marks	Total	Comments
2(a)	7 22	B1 B1	2	A correct pivot (7 or 22) 2 nd correct pivot and no others
(b)	C 1st 7 2nd 5 3rd 3	B1 B1 B1	3	Condone 7, 5, 3 or $7 + 5 + 3 (= 15)$ unlabelled but must be in this order
(c)	No – 16, 19 haven't been compared (OE)	E1	1	BOTH "No" (or equiv) AND "16, 19" (only) mentioned or highlighted in script
	Total		6	
3(a)(i)	$ \begin{array}{ccc} EB & (5) \\ EH & 7 \\ AB & 8 \end{array} $	M1		Prim's, MST, 6+ edges (no cycles), edges not lengths or vertices, with first 2 edges correct
	HI 9 AD 10	B1		8 edges
	$\begin{array}{c c} AD & 10 \\ DG & 4 \end{array}$	A1		AB 3rd
	$ \begin{array}{ccc} EF & 12 \\ FC & 6 \end{array} $	A1	4	All correct
(ii)	61	B1	1	
(iii)		M1		6+ edges, connected, no cycles
		A1	2	Correct, including labelling
(b)	Delete <i>BA</i> , <i>BE</i> and reconnect with 1 edge or a spanning tree with 7 edges not including <i>B</i> (either as a list or diagram)	M1		PI from their diagram in (iii)
	(61 - 13 + 11) = 59	A1	2	Note: 59 scores 2/2
	Total		9	

01 (cont))			
Q	Solution	Marks	Total	Comments
4(a)(i)	B[9] 3. G[12]			
	2.5 10.5	M1		(2 values at E or F)
	0 45 5 2113 3	A1		Correct values at E and F
	A 7.5 C 6 H 6 J 10 13.5 2t 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	m1		2 values at <i>I</i>
	6 45 2t 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5			3 values at J
		B1		18 at <i>J</i>
	D 7.5 /18[15]	A1	6	All correct, condone 0 missing at <i>A</i> , with rejected values crossed and final values boxed and no extra values at other vertices
(ii)	A D F I J	B 1	1	or reverse
(b)	$7.5 + x < 12$ OE $16.5 + x \ge 18$ OE	M1		Either correct condone $7 \cdot 5 + x \le 12$ or $16 \cdot 5 + x > 18$
		A1		Both correct
	1.5 ≤ <i>x</i> < 4.5	A1	3	1.5 $\leq x < 4.5$ seen (with or without working) scores 3/3 Condone 1.5 $\leq x$ and $x < 4.5$ or exact equiv in words but must see "and"
				$1.5 < x$ or $1.5 \leq x$ or $x < 4.5$ or $x \leq 4.5$
				with no working M1A0
	Total		10	
5(a)	A vertex / vertices of odd order (A, B, G, H) OE	E1	1	Condone statement of non-Eulerian graph
(b)	AB + GH = (180 + 165) = 345 AG + BH = (90 + 210) = 300	M1		These 3 correct sets of pairs
	AH + BG = (150 + 210) = 360	A2,1		3 correct totals, 2 correct totals
	Dist 1215 + 300 PI = 1515	M1 A1	5	1215 + their smallest CSO
(c)(i)	3	B1	1	
(ii)	2	B1	1	
	Total		8	

ID01 (cont)				
Q	Solution	Marks	Total	Comments
6(a)(i)	10	B1	1	
(ii)	4	B1	1	
(iii)	5	B1	1	
(b)	eg	M1 A1	2	Simple graph, 6 vertices Eulerian graph with 9 edges
	Tota	al	5	
7 (a)	33	B1	1	
(b)	<i>B A E D C B</i> = 41	M1 A1 B1	3	Tour that visits all vertices Correct tour
(c)		M1		$\begin{cases} \text{Spanning tree without } C \\ (\text{either drawn or edges listed}) \\ \text{and} \\ 2 \text{ different edges from } C \\ (\text{either drawn or edges listed}) \end{cases}$
		A1		Correct MST
	(5)	A1		Correct 2 edges from C
	= 33	B1	4	
(d)		M1		Correct network Possibly earned in (c)
	Optimal OE	A1	2	
	Tot:		10	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Decision 1 – Jan	uary 2011
---	-----------

Q		Solution		Marks	Total	Comments
8 (a)						
	X	Α	В			
	0					Condone omission of $X = 0, A = 20, B =$
		20	8			
		10				
			16	M1		SCA Trace as far as their '10' at A and
		5				their '16' at <i>B</i> , ignore values in <i>X</i> colum
			32	A1		All correct up to and including 32 at <i>B</i>
	32					
		2				
			64	A1		All correct up to and including 64 at <i>B</i>
		1				
			128			
	160			A1	4	All correct and no further working
	("160")					
			0.5	D 1		
(b)	Multiplication		OE	B1	1	
(c)	Continuous loo	n	OE	E1		
(-)	as never reach	-	OE	E1	2	
			Total		7	

001 (cont) 0	Solution	Marks	Total	Comments			
	$\frac{\text{Solution}}{6x + 9y + 9z \le 600}$		Total				
9(a)	$6x + 9y + 9z \le 600$ $2x + 3y + 3z \le 200$	M1 A1		Any of the three inequalities correct (un)simplified, condone strict inequalities CAO			
	$9x + 6y + 9z \le 600$ $3x + 2y + 3z \le 200$	A1		САО			
	$6x + 12y + 18z \ge 480$ $x + 2y + 3z \ge 80$	A1	4	CAO			
(b)(i)	(z = y) 2x+3y+3y ≤ 200 or 2x+6y ≤ 200	M1		Correctly substitute into this inequality - either simplified or unsimplified form			
	$x+3y \le 100 \qquad \text{AG}$ $3x+2y+3z \le 200 \qquad \text{AG}$ $(\Rightarrow) 3x+5y \le 200 \qquad \text{AG}$			Correctly substitute into this inequality - either simplified or unsimplified form			
	$(\Rightarrow) 3x + 3y \le 200 $ AG $x + 2y + 3z \ge 80$			Correctly substitute into this inequality - either simplified or unsimplified form			
	$(\Rightarrow) x + 5y \ge 80 \qquad \text{AG}$	A1	2	All correct – must link their original inequality to the stated answers			
(ii)	Each line must be straight to have the B mark available. For all lines, must be correct to ¹ / ₂ square horizontal and vertical at the indicated vertices.						
	50	B1		Line through (10, 30) and (40, 20)			
	30	B1		Line through (50, 10) and (0, 40)			
	20 FR	B1		Line through (80, 0) and (0, 16)			
		B1	4	FR, must have all lines correct and labelled region (condone no shading			
(iii)	Max $x + 2y$ PI	M1		If no statement (PI), then check OL on diagram, which must be correct for M1			
	Max (= 25 + 50) = 75	A1	2	Note: 75 with no working 2/2			
(iv)	25 basic, 25 standard, 25 luxury	B1F	1	Condone "25 of each type" ONLY if (b)(iii) fully correct Note $x = 25 = y = z$ B0			
	Tota	1	13				
	1012		75				

Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MD01

(Specification 6360)

Decision 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

m or dMmark is dependent on one or more M marks and is for methodAmark is dependent on M or m marks and is for accuracyBmark is independent of M or m marks and is for method and accuracyEmark is for explanation√or ft or Ffollow through from previous incorrect resultCAOcorrect answer onlyCSOcorrect solution onlyAWFWanything which falls withinAWRTanything which rounds toACFany correct formAGanswer givenSCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesignificant figure(s)dpdecimal place(s)	М	mark is for method
Bmark is independent of M or m marks and is for method and accuracyEmark is for explanation \sqrt{or} ft or Ffollow through from previous incorrect resultCAOcorrect answer onlyCSOcorrect solution onlyAWFWanything which falls withinAWRTanything which rounds toACFany correct formAGanswer givenSCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks $-x$ EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	m or dM	mark is dependent on one or more M marks and is for method
Emark is for explanation \sqrt{or} ft or Ffollow through from previous incorrect resultCAOcorrect answer onlyCSOcorrect solution onlyAWFWanything which falls withinAWRTanything which rounds toACFany correct formAGanswer givenSCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks $-x$ EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	А	mark is dependent on M or m marks and is for accuracy
\checkmark or ft or Ffollow through from previous incorrect resultCAOcorrect answer onlyCSOcorrect solution onlyAWFWanything which falls withinAWRTanything which rounds toACFany correct formAGanswer givenSCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks $-x$ EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	В	mark is independent of M or m marks and is for method and accuracy
CAOcorrect answer onlyCSOcorrect solution onlyAWFWanything which falls withinAWRTanything which rounds toACFany correct formAGanswer givenSCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	E	mark is for explanation
CSOcorrect solution onlyAWFWanything which falls withinAWRTanything which rounds toACFany correct formAGanswer givenSCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	\sqrt{or} ft or F	follow through from previous incorrect result
AWFWanything which falls withinAWRTanything which rounds toACFany correct formAGanswer givenSCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	CAO	correct answer only
AWRTanything which rounds toACFany correct formAGanswer givenSCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	CSO	correct solution only
ACFany correct formAGanswer givenSCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	AWFW	anything which falls within
AGanswer givenSCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	AWRT	anything which rounds to
SCspecial caseOEor equivalentA2,12 or 1 (or 0) accuracy marks-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	ACF	any correct form
OEor equivalentA2,12 or 1 (or 0) accuracy marks-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	AG	answer given
A2,12 or 1 (or 0) accuracy marks-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	SC	special case
-x EEdeduct x marks for each errorNMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	OE	or equivalent
NMSno method shownPIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	A2,1	2 or 1 (or 0) accuracy marks
PIpossibly impliedSCAsubstantially correct approachccandidatesfsignificant figure(s)	-x EE	deduct <i>x</i> marks for each error
SCAsubstantially correct approachccandidatesfsignificant figure(s)	NMS	no method shown
c candidate sf significant figure(s)	PI	possibly implied
sf significant figure(s)	SCA	substantially correct approach
	С	candidate
dp decimal place(s)	sf	significant figure(s)
	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

	PMT

MD01	

MD01			T 4 1	
Q	Solution	Marks	Total	Comments
1(a)	$A \longrightarrow C \longrightarrow $	M1 A1	2	Bipartite graph, 2 sets of 6 vertices with 10+ edges Correct including labelling
(b)	$E - 5 \neq D$ $E - 3 \neq A$			
	$ \begin{array}{c} F-5+D\\ F-5+E \end{array} $	M1		1 correct
	1 - A + 3	M1		1 correct, from a different starting point
	$\begin{array}{c} 1 - B \neq 2 \\ 6 - B \neq 1 \end{array}$			
	6-B+2			
	E-3+A-1 F-5+D-2+B-6	A1 A1		Either order
	Match A1, B6, C4, D2, E3, F5	B1	5	Must be listed, not simply shown on diagram
	or first			
	E - 5 + D - 2 + B - 1	(A1)		
	then F - 5 + E - 3 + A - 1 + B - 6	(A1)		Must be in this order
	or first			
	E - 5 + D - 2 + B - 6	(A1)		
	then F - 5 + E - 3 + A - 1	(A1)		Must be in this order
	or			
	first $F - 5 + D - 2 + B - 1$	(A1)		
	then			Must be in this order
	E - 3 + A - 1 + B - 6	(A1)	_	
	Total		7	

Q	Solution	Marks	Total	Comments
2(a)(i)	<i>x</i> < 6	B1	1	Condone $x \le 5$
(ii)	<i>x</i> < 4	B1	1	$x \leq 3$
(b)(i)	<i>x</i> < 11	B1	1	$x \le 10$
(ii)	<i>x</i> > 2	B1	1	$x \ge 3$ Condone $2 < x < 11$
(c)	<i>x</i> = 3	M1 A1	2	Their max (b)(ii) $< x <$ their min (a) CSO
	Total		6	
3 (a)(i)	AC CH FH CE	M1		Prim's, ST, 5+ edges (no cycles), edges not lengths or vertices, with first 4 edge correct
	CD (or ED) GH	B1		7 edges
	DB	A1		CD (or ED) 5th
		A1	4	All correct
(ii)		M1		<i>CD</i> , <i>ED</i> either of these lines ST with 5+ edges, connected, no cycles
	F H D	A1	2	Correct, including labelling
(iii)	G B	B1	1	
(b)	Delete <i>CH</i> , <i>HG</i> , <i>HF</i> and add <i>FA</i> and one of <i>GC</i> , <i>GA</i> , <i>GD</i> , <i>GF</i>	M1		Deleting their edges connected to H , an adding edges to make a ST with 6 edge
	or a ST with 6 edges not including <i>H</i> (either as a list or a diagram)			
	70(p)	A1	2	Note: 70 scores 2/2
	Total		9	

Q	Solution	Marks	Total	Comments
4(a)(i)	F ^[7] 7 T ¹⁴ 13 4 E ₁₈ 17	M1		2+ values at <i>S</i> or <i>R</i> or <i>T</i>
	7 1 5 10 5	A1		Correct values at S
	10 \$109 8 21	m1		2 values at <i>E</i> and 2 values at <i>B</i>
	0 10 (\$10 % ° 21) D 29 23 22	m1		3 values at D
	6 M_{6} B R R B	A1		All correct, condone 0 missing at <i>A</i> , wit rejected values crossed and final values boxed and no extra values at other vertices
	14 13	B1	6	22 is final value at <i>D</i> (value on diagram overrides value in script)
(ii)	Route OFSTED	B1	1	Or reverse
(b)(i)	16	B1	1	
(ii)	OFSRB	B1	1	Or reverse
	Total		9	
5(a)	$AC + FD \ (= 14 + 18) = 32$	M1		These 3 correct sets of pairs, letters not numbers
	$AF + CD \ (= 10 + 26) = 36$	A2,1		3 correct totals, 2 correct totals
	$AD + CF \ (= 26 + 24) = 50$			Condone 26 + 24 not evaluated if statement of "too big" OE
	$\min = 150 + 32$	m1		150 + their smallest, PI
	= 182	A1cso	5	
(b)	Repeat FD	M1		PI 182 – AC
	(= 150 + 18) = 168	A1	2	168 unsupported scores 2/2
(c)(i)	Repeat AF	M1		PI
	(= 150 + 10) = 160	A1	2	160 unsupported scores 2/2
(ii)	(Start/finish) C and D	B1	1	Must have both and only these
	Total		10	

2			Solution	n		Marks	Total	Comments
6(a)	Α	В	С	D	Ε			
	6	7						
		/	300					
				6.5	25.375			
	6.5				23.375			
				6.75	-7.547	M1		Trace as far as 2 values for D and E
		6.75			-7.547			Condone omission of 6, 7, 300
				6.625	9.22	A1		6.5 at A, 6.75 at D
	6.625				9.22	AI		0.5 at A, 0.75 at D
				6.6875	0.92	m1		At least 4 values for D and E
	1			1	1	4.1	4	
						A1	4	All correct including sight of 6, 7, 300, with AWRT correct to 3sf or better
(b)	1 st reason	n: No o	utput			E1		OE
	2 nd reaso	n. Nood	l to knor	v on into	aval	E2,1	3	OE
	within w					12,1	5	For E2, must be a general statement
					-	1		,

7

Total

outset

For E2, must be a general statement For E1, a statement only referring to 6, 7 or 300

Q	Solution	Marks	Total	Comments
7(a)	$x+5y \ge 25$ OE	B1		ISW
	$2x+15y \ge 60$ OE	B1		ISW
	$x + 25y \ge 40$ OE	B1		ISW
	(C =) 2.5x + 15y	B1	4	ISW; condone $250x + 1500y$, but not any other multiples
(b)(i)	y 1 5 4			Note: all points need to be correct to within half a square horizontally and vertically
		B1		Line through (0, 5) and (25, 0)
	3	B1		Line through $(0, 4)$ and $(30, 0)$
	FR	B1		Line through (15, 1) and (30, 0.4)
	2	B1		FR, must have all lines correct and
	1 OL			labelled region (condone no shading)
	0 5 10 15 20 25 30 x	M1		Objective line drawn, gradient of $-\frac{1}{6}$ or -6
		A1	6	Gradient = $-\frac{1}{6}$
(ii)	15 DIY, 2 trade	B1	1	
(iii)	(Cost) £67.50	B1	1	Condone 6750p, £67.5
	Total		12	·

Q	Solution	Marks	Total	Comments
8(a)(i)	$P U S R \ (=40)$	E1		
	Less than any other route	E1	2	Or any one of $PQR = 50$, $PUQR = 45$, PUR = 44, $PUTSR = 54$ etc stated
(ii) (b)(i)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B1 B1 M1 m1	2	6+ correct either above or below diagonal All correct Tour visiting vertices once only (except start/finish vertex) Visits all vertices
	= 119 (min)	A1 B1	4	Correct order
(ii)	QUSTUPUSRQ	M1 A1	2	Any "expansion" of <i>TP</i> or <i>PR</i> from their (b)(i), PI
(c)	P•••R U•••S	M1		ST without Q (either drawn (vertices labelled) or edges listed) and 2 different edges from Q (either drawn (vertices labelled) or edges listed)
	T	A1		either UT or TS in correct MST
		B1		4 edges in a labelled ST (must not include Q)
	R U Q	A1		Correct 2 edges from <i>Q</i>
	= 83	B1	5	
	Total		15	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) January 2012

Mathematics

MD01

(Specification 6360)

Decision 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

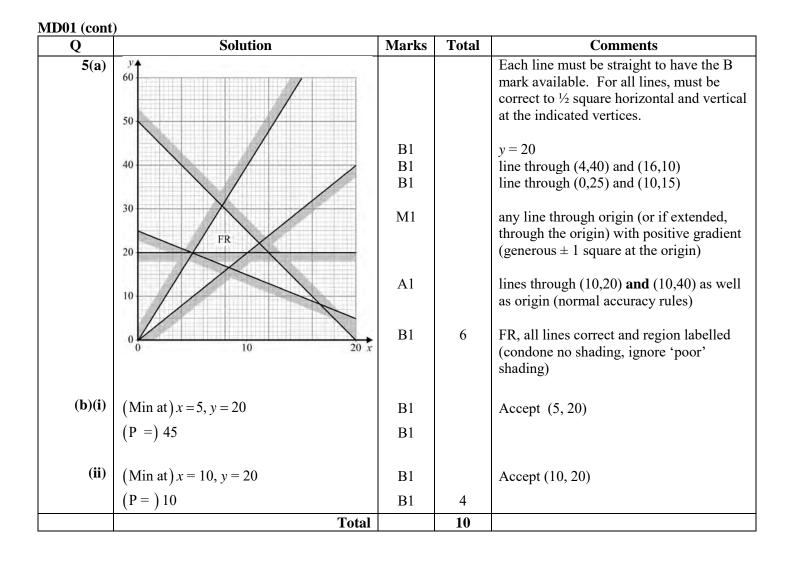
Set and published by the Assessment and Qualifications Alliance.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.


Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q				Solu	ition				Marks	Total	Comments
1	37	25	16	12	36	24	13	11			
	36	~ 24	× 13	•	37	~ 25	× 16	• 12	M1		Using 4 sets of 2
	36 _	24 ×	13	11 ×	37	25 ×	16 _	12 ×	A1		Must see this line
	13	11	16	12	36	24	37	25	ml		Using 2 sets of 4
	13	11	16	12	36	24	37	25	A1		Must see this line
	11	12	13	16	24	25	36	37	A1	5	All correct
							1	Total		5	
2(a)	A = B $B = C < C < C$ $E = C$ $F = C$				V VVVV			$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	M1	2	Bipartite graph, 2 sets of 6 vertices, at least 10 edges Correct, including labels
(b)	F $\therefore E$ $\therefore B$ $\therefore A \&$ Impo alloca	must must & C b ssible	be w be w oth w as tw	vith 2 vith 1 wo pe) cople o	canno	ot be		E1 E1 E1	3	Include conclusion Or E1 3 must be with D (generous) E1 4 " " D (generous) E1 Impossible as D cannot do both 3 and 4 (strict)
								Total		5	

MD01 (cont)

Q	Solution	Marks	Total	Comments
3 (a)	$ED = \begin{pmatrix} 6 \end{pmatrix}$	M1		Kruskal, must have first 2 edges correct &
	AC = 8			no cycles (edges not lengths must be seen)
	$AD = \begin{bmatrix} 10 \end{bmatrix}$			(edges not lengths must be seen)
	or	A1		AD or CD third edge
	$DC = \begin{bmatrix} 10 \end{bmatrix}$			
	$FG = \begin{bmatrix} 11 \end{bmatrix}$			
	$BE = \begin{bmatrix} 12 \end{bmatrix}$	A1		<i>BE</i> 5th edge
	$CF = \begin{pmatrix} 16 \end{pmatrix}$	B1		6 edges
		A1	5	All correct
(b)	63	B1	1	
(c)	B → E			
	/-	M1		Spanning tree with 5+ edges
		A1		Correct including labelling
	\backslash			
	C F			
	B → E			
		A1	3	Correct including labelling on a separate
		AI	5	diagram
	C^{\vee} F			
	Total		9	
4(a)	CE + KH = (35 + 24) = 59	M1		These 3 correct sets of pairs
	CK + EH = (25 + 40) = 65	A2,1		3 correct totals, 2 correct totals
	CH + EK = (25 + 30) = 55	,		,
	Total $= 224 + 55$ PI by their '279'	M1		224 + their smallest of three pair totals
	= 279	Al	5	CSO including totals seen
(b)	3	B1	1	
(1))		~ -	-	

MD01 (cont)

6(a) 6(a) $I_{2B}B^{B}$ I_{39} I_{31} I_{32} I_{31} I_{31} I_{32} I_{31} I_{31} I_{32} I_{31} I_{32} I_{31} I_{32} I_{31} I_{32} I_{31} I_{32} I_{31} I_{31} I_{32} I_{31} I_{32} I_{31} I_{32} I_{32} I_{31} I_{32} I_{32} I_{31} I_{32} I_{32} I_{31} I_{32} I_{32} I_{31} I_{32} I_{32} I_{33} I_{33} I_{32} I_{33} I_{33} I_{33} I_{32} I_{33} I_{33} I_{32} I_{33} I_{33} I_{32} I_{33} I_{32} I_{33} I_{33} I_{32} I_{33} $I_$	Q	Solution	Marks	Total	Comments
\mathbb{Z} \mathbb{B} \mathbb{A} \mathbb{C} \mathbb{A} \mathbb{C} \mathbb{C} \mathbb{A} \mathbb{C} C	6(a)	AD			
I_{25} 0 10 48 47 A1Correct values at D 55 0 0 0 10 48 47 10 4 values at F 55 66 56 45 m1 2 values at G or H 2 values at I 10 66 56 10 10 10 10 10 66 56 45 m1 2 values at I 10 66 56 10 10 10 10 88 66 794 93 92 10		28 48	M1		SCA, 2 values at <i>C</i> or <i>D</i>
$\begin{array}{c} 1 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 10 \\ 137 \\ 149 \\ 149 \\ 145 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 145 \\ 149 \\ 145 \\ 149 \\ 145 \\ 149 \\ 145 \\ 149 \\ 145 \\ 1$			A1		Correct values at D
$\begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		D 39 37	m1		4 values at F
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		55 45	m1		2 values at G or H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		66 56	m1		2 values at I
Al All correct, condone 0 missing at A, with rejected values crossed and final values boxed and no extra values at other vertices. Bl 7 145 at J					Each m1 depends only on the M1
J 149 145		54 10 10 10 10 31 31 10 31 10 10 10 10 10 10 10 10 10 1	A1		boxed and no extra values at other
(b) Route: A B E F G H I J B1 1 Or reverse		10 <i>J</i> 149 145	B1	7	145 at J
	(b)	Route: A B E F G H I J	B1	1	Or reverse
(c) 'their 135' – $(28 + GJ)$ GJ may be in terms of letters or numbers M1 or replace their BG in terms of letters or numbers eg 55 + 8 + 10 = 73, then 'their 73' – 10 =	(c)		M1		numbers eg $55 + 8 + 10 = 73$,
or $BG = AG - 10 - 28$ eg BG = 'their 101' - 10 - 28					
= 63 A1 Note: 63 with no working seen scores 2/		= 63	A1		Note: 63 with no working seen scores $2/2$
Route: A B G H I JB13Or reverse		Route: A B G H I J	B1	3	Or reverse
Total 11		Total		11	

Q	Solution	Marks	Total	Comments
7(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	2	5 correct values in an <i>E</i> 'line' All correct
(b)(i)	BADEFGCB 80	M1 A1 A1 B1	4	Tour visiting at least 6 vertices Visits all 7 vertices Correct order from <i>B</i>
(ii)	B A D E F G <u>E</u> C <u>A</u> B	M1 A1	2	Expansion of <i>GC</i> or <i>CB</i> Both correct
(iii)	76	B1F	1	Minimum of 76 and their (b)(i)
(c)(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		Use of matrix form, 4+ numbers circled and 4+ parallel 'lines' crossed out
	<u>A</u> <u>2</u> <u>6</u> <u>4</u> <u>16</u> <u>27</u>	A1		C added 4th
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1		Any 5 values 'circled'
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A1		All correct values circled and lines crossed out, either as shown or as mirror image. Order of vertices must be clearly shown. Condone omission of line at <i>G</i> .
(42	DI	4	
(ii)	$ \begin{array}{r} 43 \\ 43 + (4 + 7) \\ = 54 \end{array} $	B1 M1 A1	3	For 43 seen, or for $2 + 6 + 3 + 12 + 20$ Their 43 + 2 different edges from <i>E</i> SC 54 with no working $2/3$
(iii)	64	B1	1	
(d)	$64_{t} \leq T \leq 76$	B1B1	2	Must be written in symbols
	Total		19	

Q	Solution	Marks	Total	Comments
8 (a)	2x + 3 > 0	M1		Any of these seen
	3x-5>0			
	x + 1 > 0			Candidates may use ≥ 1 instead of >0
	4x - 13 > 0			
	$x > \frac{13}{4} \text{ or } \ge \frac{14}{4}$	A 1	2	Mart and had the Lange for the same to
		A1	2	Must see both lines. Ignore further work on other inequalities.
	(Integer) so $x \ge 4$			Accept 4.6 or 4.7 AWRT
				The second se
(b)(i)	2x+3 > 3x-5	M1		Any correct ISW, condone use of \geq
	> <i>x</i> +1	A1		2nd correct ISW
	>4x-13	A1	3	All correct ISW
(ii)	3x - 5 > x + 1	M1		Either correct ISW, condone use of \geq
	> 4 <i>x</i> - 13	A1	2	Both correct ISW
(iii)	x + 1 > 4x - 13	B1	1	ISW
(c)	$\frac{13}{4} < x < \frac{14}{3}$	M1		Or $4 \le x < \frac{14}{3}$, condone $3 < x < \frac{14}{3}$
	4 3			3 3 (Ignore all other inequalities)
	x = 4	A1	2	Must have scored 9/9 earlier
			2	
				SC $x < \frac{14}{3}$ $\therefore x = 4 \ 1/2$
	Total		10	-
	TOTAL		75	

Version

General Certificate of Education (A-level) June 2012

Mathematics

MD01

(Specification 6360)

Decision 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q				Soluti	on			Marks	Total	Comments
1(a)	A B C	1 0 1 0	2 0 0 0	3 1 0 1	4 0 1 0	5 0 0 0	6 0 0 1	M1		6×6 matrix labelled with some 0, 1, \checkmark, \varkappa 's (at least 9 entries)
	D E F	1 0 0	1 0 0	0 0 0	0 1 0	0 1 1	0 0 1	A1	2	All correct
(b)	A-3 or 2-L							M1		
	A-3+C-6+F-5+E-4+B-1+D-2 or 2-D+1-B+4-E+5-F+6-C+3-A Match A3, B1, C6, D2, E4, F5							A1		
								B1	3	
							Total		5	
2(a)	1st 2nd	$\left. \begin{array}{c} 1\\2 \end{array} \right\}$						B2		All correct
_	3rd	1						(B1)	2	2 correct
(b)		$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$						B2	2	All correct
(-)	3rd	0	ala a 1-	22 ((B1)	2	2 correct
(c)	INO, h	as to	check	25 (ai	10 26)			E1	1	No, (at least) one more pass needed etc
							Total		5	

Q	Solution	Marks	Total	Comments
3(a)(i)	$ \begin{array}{c} AD \\ AB \\ +S \end{array} \left[\begin{array}{c} 4 \\ 6 \\ +1 \end{array} \right] $	M1		Using Prims, first 3 edges correct, 6+ edges, no cycles, must have edges not
	$\begin{array}{c ccc} AC & 16 \\ DE & 19 \\ EG & 10 \\ \end{array}$	B1		lengths 8 edges
	$GI = 12 \\ IH = 13$	A1		GI 6 th
	$IF \left(\begin{array}{c} 17 \\ 17 \end{array} \right)$	A1	4	All correct
(ii)	97	B1	1	
(iii)		M1		ST with 6+ edges
	$A \underbrace{\begin{array}{ccc} D & E & G \\ \bullet & \bullet & \bullet \end{array}}_{I} I$	A1	2	All correct including labels
	СН			
(b)(i)	IF	B1	1	
(ii)	AC	B1	1	
	Total		9	
4(a)(i)	B 6 3433 G	M1		Dijkstra, $2+$ values at C and 1 value at B and D
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		Sight of 10, 9, 8 (only) at <i>C</i>
		m1		3 values at <i>E</i> and 2 values at <i>G</i> or <i>I</i>
	$ \begin{array}{c} \bigvee_{\boxed{7}} & & & \\ D & & I \end{array} $	A1		All correct, including crossing out, boxing (condone omission of 0 at A)
		B1	5	39 at <i>J</i> (final value)
(ii)	Route A D C E F H I J	B1	1	or reverse
(b)	(Time = 39 min) their 39			
	(Dist =) $\frac{their 39}{60} \times 90$ OE	M1	2	Must see lum on 58500 m
	= 58.5 km CAO	A1	2	Must see km, or 58500 m SC 58.5 with no working scores M1A0, but 58.5 km with no working scores 2/2
	Total		8	

Q	Solution	Marks	Total	Comments
5(a)	BD+FH = (210+210) = 420 BF+DH = (200+180) = 380	M1		These 3 sets of pairs
	$\begin{array}{rcl} BF+DH & = & 200+180 \\ BH+DF & = & 260+340 \\ \end{array} = 380 \\ = 600 \end{array}$	A2,1		3 correct totals, 2 correct totals
	(MIN) = 2430 + 380	m1		2430 + their smallest of three pair totals
	= 2810	A1	5	CSO
(b)	2430 + 340 (DF) = 2770	B1F	1	2430 + their DF
(c)(i)	2430 + 180 (DH) = 2610	B1F	1	2430 + their min (must have scored M1)
(ii)	B, F only	B1	1	
	Total		8	
6(a)		E1	1	
(b)(i)	28	B1		
(ii)	Odd number of edges at (all) vertices	E1	2	Must see the word odd, not just 7
(c)(i)	$\frac{n(n-1)}{2}$ OE	B1		
(ii)	n-1	B1		
(iii)	<i>n</i> must be odd	E1		Must have <i>n</i> in their answer
(iv)	<i>n</i> = 3	B1	4	Must have <i>n</i> in their answer
	Total		7	

Q	Solution	Marks	Total	Comments
7(a)	$ \begin{pmatrix} A & C & F & D & E & B & A \\ 10 & 31 & 32 & 11 & 18 & 16 \end{pmatrix} $			
	= 118	B1	1	
(b)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1 m1 A1 B1	4	Tour from <i>A</i> visiting at least 4 vertices Visits all vertices Correct order from <i>A</i>
(c)	$\begin{array}{c c} \hline 18 \\ \hline E & \hline 11 \\ \hline D & \hline 14 \\ \hline C \\ \hline B \\ \hline \end{array} $ (31)	M1		Spanning tree + 2 different edges from A (ST must be edges using B, C, D, E, F not lengths, but condone two lengths from A, or 26) Diagram is not necessary in part (c)
	F	A1		Correct minimum spanning tree
	+ [16] (10]	A1		Correct edges (not lengths) from A
	A = 100	B1	4	
(d)		B1		Correctly labelled diagram
	Lower bound does not make a cycle OE AND tour > 100	E1	2	Both, must be strict inequality
	Total		11	

MD01 – June 2012

Q		Solut	tion		Marks	Total	Comments
8 (a)	A B	С	D				
	1 1	1	1				
		1	1				
	2		2				
	2	2					
			2.5		M1		At least 3 evaluated values for D
	3	6			A1		$3^{\rm rd}$ value of <i>D</i> as 2.5
		-	2.67	AWRT			
	4	24			B1		Values of (1), 1, 2, 6, 24 (only) seen for <i>C</i>
		2.	2.71	AWRT	m1		Exactly 5 evaluated values for D
					A1		Correct 5 values for <i>D</i>
	An estimat	e of e is 2.7	1 AWR	Г	A1	6	All correct values seen (1 for <i>A</i> , 4 for <i>B</i> ,
					CSO		5 for C and D) and correct final statement
(b)	Never-endi						
	(A,) B(, C)) always re	eset to 1	OE	B2,1	2	
				Total		8	

Q	Solution	Marks	Total	Comments
×			- 0000	
9(a)	$x \ge 100, y \ge 200$	D 1		
	$ \begin{array}{l} x \ge 100, \ y \ge 200 \\ x + y + z \ge 400 \end{array} \right\} \text{OE} $	B1		
	$4x + 3y + 4z \le 1800$ OE	B1		
	$y \ge \frac{40}{100} \left(x + y + z \right) \text{OE}$	B1	3	
	100 `````			
(b)(i)	(x=2z)			
	$x + y + \frac{1}{2}x \ge 400$ $\Rightarrow 3x + 2y \ge 800$			Correct substitution and fully simplifying
	$\Rightarrow 3x + 2y \ge 800$	M1		1 inequality (must see evidence: either replacing z or multiplying inequality)
	. ,			replacing 2 or multiplying inequality)
	$4x + 3y + 2x \le 1800$			and the second
	$6x + 3y \le 1800 \Big\}$	A1		As above 'in 2 nd inequality'
	$2x + y \le 600$			
	$5y \ge 2x + 2y + x$			
	$ \begin{array}{c} 5y \ge 2x + 2y + x \\ 3y \ge 3x \\ y \ge x \end{array} $	A1	3	As above 'in 3 rd inequality'
	$y \ge x$			
(ii)				Each line must be straight to have the
(11)				B mark available. For all lines, must be
				correct to half square horizontal and
				vertical at the indicated vertices.
	500	B1		x = 100, y = 200
	400 Max (100,400)			
		B1		y = x line
	300- FR	B1		through (100, 100) and (200, 200) 2x + y = 600 line
	200	DI		through (100, 400) and (200, 200)
		B1		3x + 2y = 800 line
	100-	B1	5	through (100, 250) and (200, 100) Feasible Region, all lines correct and
		DI	5	region labelled (condone no shading,
	δ 1όο 2όο 3όο -			ignore 'poor' shading)
(iii)	(\mathbf{M}_{r}) $+$ $\frac{3}{3}$ \mathbf{r}			
(111)	(Max) $y + \frac{3}{2}x$	M1		PI by objective line with gradient -1.5
	(=400+150)=550	A1	2	
(iv)	Buys 100 soft			
(1V)	400 medium			
	50 firm	B1	1	
	T-4-1		1/	
	Total TOTAL		14 75	
	IOTAL	1	15	

Version

General Certificate of Education (A-level) January 2013

Mathematics

MD01

(Specification 6360)

Decision 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
(1)(a)	A 1 B 2	M1		Bipartite graph, 2 sets of 5 vertices, at least 9 edges
		A1	2	All correct, including labelling
(b)	<i>E</i> 5 Only <i>E</i> can do task 1 and task 3. One person cannot do 2 tasks so impossible.	M1 A1	2	
	Or			
	A does 5, then B must do task 4 and D must do task 4.	(M1)		Must have <i>A</i> to 5 first, or 3 people <i>A</i> , <i>B</i> , <i>D</i> can only do 2 tasks 4, 5
	One task cannot be done by 2 people so impossible.	(A1)		Not enough tasks for the number of people so impossible.
	Or			
	4 people <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> can only do 3 tasks 2, 4, 5	(M1)		
	Not enough tasks for the number of people so impossible.	(A1)		
	Total		4	

Q				Sol	lution	<u> </u>			Marks	Total	Comments
2(a)	7	8	1	6	3	4	5	2			
<i>2</i> (a)	x	-	0	~	x	- -	0	~			
	7		0		3		0		M1		4 sets of 2 with evidence of at least 1 pai
	,	8			0	4					being compared
			1				5				
				6				2			
	3	4	1	2	7	8	5	6	A1		Must see this line
	-	Х	-	Х	-	Х	_	Х			
	3		1	_	7	_	5				
	1	4	2	2	5 5	8	7	6	m1		2 sets of 4 with evidence of at least 1 set
	1 1	2 2	3 3	4	5	6 6	7	8 8			being compared
	1	Ζ	3	4	3	0	/	8	A1	4	All correct, including third pass
									AI	4	(ignore extra 'lines' of working)
											(ignore extra lines of working)
(b)	4								B1	1	
								Total		5	
3 (a)			D, F, F								
			= 37.2								
			= 38.4	4					M1		These 3 pairs of odds stated
	BH-	-DF :	= 40						A2,1		3 correct totals, 2 correct totals
	Lon	ath 1	10 1	27.7					m1		119 their 'smallest' DI by their first
	Len	gui I	18 + 3	51.2					m1		118 + their 'smallest' PI by their final answer
		= 1	155.2						A1	5	CSO, including 3 correct totals.
									111	5	oso, meruding s correct totals.
(b)(i)	Εtv	vice							B1		
(ii)	I tw								B1	2	
								Total		7	

Q	Solution	Marks	Total	Comments
4(a)(i)	$ \begin{array}{c} AB \\ BC \\ BE \end{array} \begin{pmatrix} 6.1 \\ 7.4 \\ 9.7 \\ \end{array} $	M1		Prim's, 1st 3 correct, must be edges not lengths and no cycles
	DE 7.2	B1		8 edges
	EF 10.6 EH 12.5	A1		EF 5th
	$ \begin{array}{c c} HI & 6.7 \\ GH & 8.9 \end{array} $	A1		All correct
(ii)	(Length =) 69.1	B1		
(iii)	$A \xrightarrow{B} C$	M1		Spanning tree with 9 vertices and 8 edges
	$D \xrightarrow{E} F$ $G \xrightarrow{H} I$	A1	7	All correct, including labelling
(b)(i) (ii)	GH EF	B1 B1	2	
(c)(i) (ii)	1st AB Last EH	B1 B1	2	
	Total		11	

Q	Solution	Marks	Total	Comments
5(a)	^y 6 0			Accuracy: All lines must be ruled, correct to within ¹ / ₂ small square both horizontally and vertically
	50	B1		x = 15, y = 20
	40	B1		x + y = 60,
	30 F.R.	B1		correct at (10, 50) and (40, 20) 2x + y = 80, correct at (15, 50) and (30, 20)
	20	B1		y = x, correct at (10, 10) and (30, 30)
	10 - 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	B1	5	F.R. (a pentagon) labelled, must have scored previous 4 marks
		Đá		
(b)(i)	(Max at) (15,45)	B1		
	(P =) 195	B1	2	
(ii)	Sight of (26 – 27, 26 – 27)	B1		
	(P =) 130 - 135	M1		
	$(P =) \frac{400}{3}$	A1	3	oe
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)		M1		Using Dijkstra, 2 or 3 values at <i>C</i> and one value only at both <i>B</i> and <i>D</i>
		A1		Correct values at <i>C</i>
		m1 m1		2 values at <i>G</i> , <i>H</i> , <i>I</i> 4 values at <i>J</i>
		A1		All correct, including cancelling and boxing. (condone omission of 0 at A)
	$\begin{array}{c c} A & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	B1		Final value at <i>J</i> is 30.
	Route A B C F I J	B1	7	Or reverse
(b)	From (a) $\frac{\text{'their'30}}{50} (\times 60) = 36 \text{ (mins)}$ (or 0.6 (hrs))	M1		Attempt at finding EITHER time (PI by answer)
	Direct $\frac{35}{60} (\times 60) = 35 \text{ (mins)}$ (or 0.58 AWRT (hrs))	A1F		Both correct (oe)
	Min time = 35 mins (or 0.583 hrs or 7/12 hrs)	B1	3	Must see units
7(a)(i)	Total	B1	10	
(ii)	28	B1	2	
(b)(i)	<i>n</i> –1	B1		
(ii)	n(n-1)	B1	2	oe,
	2			
(c)(i)	(d =) 0,1,2,3,4,5	B2		B1 for at least 0,1,5 or B1 for at least 2,3,4
(ii)	(d =) 2,3,4,5	B1		
(iii)	(<i>d</i> =) 2,4	B1	4	
	Total		8	

MD01 - AQA GCE Mark Scheme 2013 January Series

	~			~
Q	Solution	Marks	Total	Comments
8 (a)	58	B1	1	
(b)	EACDBE	B1	1	Or reverse
(c)	$ \begin{array}{r} E & A & B & D & C & E \\ (8 & 10 & 15 & 10 & 23) \\ = & 66 \\ \end{array} $	M1 m1 A1 A1 CSO	4	Tour Visit all vertices Correct order If M0 scored, then 66 scores SC2
(d)	$ \begin{bmatrix} AB \\ BD \\ DC \end{bmatrix} $ (35)	M1 A1		A spanning tree with 3 edges connecting A , B , C and D and 2 edges from E Correct m s t
	$\begin{bmatrix} EA \\ EB \end{bmatrix} (17 = 52)$	A1 A1	4	Correct edges from <i>E</i> If M0 scored, then 52 scores SC2
(e)	A B	CSO B1	т	
	E D C D Doesn't give a tour	E1	2	Or other sensible conclusion
				Eg: tour > 52 or 'doesn't give a solution'
	Total		12	

Q	Solution	Marks	Total	Comments
9	$2x + 3y + 5z \le 400 \\ 3x + 4y + 3z \le 400 $	B1	1000	Both
	$(6x + 2y + 2z \le 400)$			
	$\Rightarrow 3x + y + z \le 200$	B1		
	$11x + 9y + 10z \ge 1000$	B1		
	their $(2x+3y+5z) >$ their $(3x+4y+3z)$	M1		Condone ≥
	2z > x + y	A1 CAO		oe
	$6x + 2y + 2z \le \frac{4}{10} (11x + 9y + 10z)$	M1		Condone < Allow numerical values to $\frac{4}{10}$
	$16x - 16y - 20z \le 0$ oe	A1		
	$4x \le 4y + 5z$	A1 CAO	8	
	Total		8	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MD01

(Specification 6360)

Decision 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1		M1		Bipartite graph, 2 sets of 6 vertices, at least 12 edges
	C D E F F G G G G G G G G G G	A1	2	All correct including labelling
(b)	(Missing A, $F / 4$, 6) A - 1 + B or $A - 3 + CF - 1 + B$ or $F - 3 + C$	M1 M1		or 4 - B + 1 or $4 - D + 56 - E + 2$ or $6 - D + 5$
	Correct 1 st path Correct 2 nd path	A1 A1		Eg $A - 1 + B - 4$ F - 3 + C - 2 + E - 6
	Match A1, B4, C2, D5, E6, F3	B1	5	or A1, B4, C2, D6, E5, F3 or A3, B4, C2, D5, E6, F1 or A3, B4, C2, D6, E5, F1
	Total		7	
2(a)				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		SCA, using pivots to create sublists
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1F B1		Correct 2nd pass Consistent pivots
		A1	4	All correct
(b)	(C =)5	B1	1	
	Total		5	

Q	Solution	Marks	Total	Comments
3 (a)(i)	EG(2.3)	M1		SCA, Kruskal's, 1 st 3 edges correct, must
	AB 2.5			be edges not lengths, and no cycle in
	IJ 2.9			solution
	AC 3.1	B1		9 edges
	AD 3.2			
	HJ 3.4	A1		AD 5th
	<i>GJ</i> 3.6			
	<i>BE</i> 3.9			
	FI 5.4	A1		All correct
(ii)	30.3	B1		
(iii)	$d \underbrace{\begin{array}{c} \hline D \\ C \\ \hline C \\ \hline \end{array}} \underbrace{\begin{array}{c} E \\ \hline G \\ \hline \end{array}} \underbrace{\begin{array}{c} H \\ \hline \\ G \\ \hline \end{array}} \underbrace{\begin{array}{c} H \\ \hline \\ \hline \\ F \\ \hline \end{array}} \underbrace{\begin{array}{c} H \\ \hline \\ \hline \\ \hline \\ \hline \end{array}} J$	M1 A1	7	Spanning tree with 10 vertices and 9 edges. All correct including labelling
(b)(i)	FI	B1		
(ii)	DA	B1	2	
	Total		9	

Q	Solution	Marks	Total	Comments
4(a)	103	B1	1	
(b)	Tour May be improved	E1 E1	2	
(c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 m1 A1 A1 CSO	4	Tour, from A, visiting at least 4 other vertices, once only Visits all vertices Correct order If M0 scored then 102 scores SC2
(d)		M1 A1		Spanning tree connecting <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> AND 2 labelled edges from <i>A</i> (for both, edges, not lengths, can be either listed or shown in diagram) Correct ST
(e)	$+$ F $= 77$ Min tour ≥ 77	A1 A1 CSO E1	4	Correct edges from <i>A</i> If M0 scored then 77 scores SC2 Allow their '77', provided '77'>75
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)(i)		M1		SCA, using Dijkstra with 2 or more values at D or I AND one value only at both F and H.
	$F = \frac{5}{6} \frac{4}{12D} \frac{4}{5} C \overline{15}$	A1		Correct values at D
	5 12 4 5	A1		Correct values at I
		ml		2 values at <i>E</i> and <i>J</i> AND 3 values at <i>B</i>
		A1		Correct values at <i>B</i> , <i>E</i> and <i>J</i>
		B1		Final value at A is 21
	$H = \frac{3}{6} = \frac{10}{9} = \frac{10}{12} = \frac{115}{5} = \frac{2t J}{20}$	A1	7	All correct, including cancelling and boxing (condone omission of 0 at G)
(ii)	A B D K G E C D K G J L I H G		2	Do NOT allow reverse order, but if correct in reverse order for all 3 then SC1
(b)(i)	(Odds A, C, L, G) AC + LG = 27	$B1 \times 3$	3	
	AC + LG = 27 AL + CG = 26	M1		These 3 sets of pairs stated
	AG + CL = 30	$A1 \times 3$		One mark for each correct total
	$Min_{160} 134 + 26$	ml	C	134 + their min of 3 totals.
	= 160	A1 CSO	6	Must have scored first 5 marks. If M0 scored, then 160 scores SC2
(ii)	4	B1	1	
	Total		17	

Q			Solutio	n		Marks	Total	Comments
6(a)(i)	A	В	С	D	E	M1		A, B correct and value(s) for each of C, D and E
	36	16	2	32	4	A1		and <i>E</i> Correct 1st pass
	16 (Print)	4	4	16	0	A1	3	All correct
(ii)	A	В	С	D	E			
	11	7	1					
	7	4		7	4	M1 A1		<i>A</i> , <i>B</i> correct and value(s) for each of <i>C</i> , <i>D</i> and <i>E</i> Correct 1st pass
	4		1	4	3	A1		Correct 2nd pass
		3	1	3	1	A1		Correct 3rd pass
	3	1		3	0			
	(Print)	1			U	A1	5	All correct
(b)	HCF (of	A and	B)		oe Total	E1	1 9	

Q	Solution	Marks	Total	Comments
7(a)	$6x + 4y + 3z \ge 420$	B1		
	$6x + 6y + 4z \ge 480 \qquad \qquad \text{oe}$	B1		
	$6x + 4y + 4z \le 720 \qquad \qquad \text{oe}$	B1	3	
(b)(i)	(y=z)			
	$6x + 4y + 3y \ge 420 \Rightarrow 6x + 7y \ge 420$	B1		Must see this substitution
	$6x + 10y \ge 480 \Longrightarrow 3x + 5y \ge 240 \text{oe}$			
	$6x + 8y \le 720 \Longrightarrow 3x + 4y \le 360$ oe	B1	2	Both other inequalities correct, condone direct substitution into simplified versions of part (a)
(ii)	¥ 4			
	120 100 80 60 40 60 40 60 FR FR 60 60 60 80 100 120 x	B1 B1 B1 B1 M1 A1	6	Accuracy: All lines must be ruled, correct to within ½ square BOTH horizontally and vertically Correct at (0, 60) and (70, 0) Correct at (0, 48) and (80, 0) Correct at (0, 90) and (120, 0) FR labelled, MUST have scored previous 3 marks Condone omission of shading on axes OL, drawn, with gradient -0.8 or -1.25 Gradient -0.8
(iii)	(Max profit =) £480 120 gold, 0 silver, 0 bronze	B1 B1	2	Including '£' All 3 must be stated
(c)	0 gold, 90 silver, 90 bronze	B1 B2	3	Including '£' If B0 scored then B1 for $x = 0$ and $y = 90$, PI
	Total		16	
	TOTAL		75	

A-LEVEL MATHEMATICS

Decision 1 – MD01 Mark scheme

6360 June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Mark	Total	Comment
1(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	2	5x5 matrix with some 0's, 1's oe (or transpose) This diagram (or transpose), including labelling.
(b)(i)	Ignore paths that do not lead to a complete match. For all paths, the order may start from 1 and/or 5. Initial path MUST have only 4 'terms' Correct 4 term path Correct pair of paths (order is only important if second path has 6 terms) D-2+B-1 and $E-4+C-5D-2+B-1$ then $E-2+D-4+C-5E-4+C-5$ then $D-4+E-2+B-1$	M1 A1		Or, D-4+C-5 and $E-2+B-1D-4+C-5$ then $E-4+D-2+B-1E-2+B-1$ then $D-2+E-4+C-5If a candidate works on diagrams, then themarks can be earned, BUT only one pathper diagram (2 paths on 1 diagram scores$
	Match - must be stated and not simply 'shown' on a diagram A3, B1, C5, D2, E4 or A3, B1, C5, D4, E2	B1	3	M0). The start vertex and path must be clear and correct to score M1. The start vertex and path on a second diagram must be clear and correct to score A1.
(ii)	Match - must be stated and not simply 'shown' on a diagram Match A3, B1, C5, D4, E2 or A3, B1, C5, D2, E4	B1	1	
	Total		6	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q	Solution	Mark	Total	Comment
I I	2(a)(i)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			with some values circled/highlighted Any 6 values circled/highlighted/listed
(ii) 485 (iii) 485 (ii) $IF(FI), IS(SI)$ (ii) $IF(FI), GH(HG)$ (ii) $IF(FI), GH(HG)$ (iii) $IF(FI), GH(HG)$ (numbering may be as first A mark, if <u>no</u> numbering on table, accept order if clearly shown by a correct list, condone omission of 7 at <i>H</i> . Condone row (or col) <i>H</i> not crossed out.) B1 5 Correct edges (not lengths), either listed or values circled/highlighted seen either in table or body of script B1 1 5 Correct including labelling Must be in this order If only 1 edge given then 'last/2 nd last' must be clearly stated Must be in this order (SC1 if B0 scored in part (i) and (ii), and ONLY <i>IS</i> given for part(i) and GH for part (ii).		<u>-1 140 130 85 100 140 60 60 </u>	A1		<i>EF</i> or <i>FE</i> , <i>EG</i> or <i>GE</i> , <i>GD</i> or <i>DG</i> , identified AND <i>E</i> , <i>F</i> , <i>G</i> numbered (1, 2, 3 or (0), 1, 2) (if no numbering on table, accept order if
(ii) 485 (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (ii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ M1 all or body of script (iii) $D = E = F$ all or body of script (iii) $D = E = F$ all or body of script (iii) $D = E = F$ all or body of script (iii) $D = E = F$ all or body of script (ii) $D = E = F$ all or body of script (iii) $D = E = F$ all or body of script (ii) $D = E = F$ all or bod			A1		(numbering may be as first A mark, if <u>no</u> numbering on table, accept order if clearly shown by a correct list, condone omission of 7 at <i>H</i> . Condone row (or col) <i>H</i> not
(iii) D E F $M1$ $A1$ Z $Correct including labelling(b)(i) IF (F1), IS (S1)(ii) IF (F1), GH(HG) B1, B1 B1 G Must be in this order If only 1 edge given then 'last/2nd last' must be clearly stated Must be in this order (SC1 if B0 scored in part (i) and GH for part (ii).)$			B1	5	values circled/highlighted seen either in
$\begin{bmatrix} D & E & F \\ G & A1 \\ G & A1 \\ I & S \\ H \\ (b)(i) & IF (FI), IS (SI) \\ (ii) & IF (FI), GH(HG) \\ \end{bmatrix} B1, B1 \\ B1 \\ B1 \\ B1 \\ B1 \\ B1 \\ S \\ B1 \\ S \\ $	(ii)	485	B1	1	
(b)(i) $IF (FI)$, $IS (SI)$ (ii) $IF (FI)$, $GH(HG)$ B1	(iii)	D E F	M1		ST with 7 vertices and 6 edges
 (b)(i) IF (FI), IS (SI) (ii) IF (FI), GH(HG) B1, B1 B1 B1			A1	2	Correct including labelling
(ii).)		IF (FI), IS (SI)		3	If only 1 edge given then 'last/2 nd last' must be clearly stated Must be in this order (SC1 if B0 scored in part (i) and (ii), and
		Total		11	

Q	Solution	Mark	Total	Comment
3 (a)(i)	$\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	M1 A1 m1 A1 B1	6	Use of Dijkstra, 2+ values at <i>F</i> Values of 44, 37, 36 only at <i>F</i> 3 values at <i>I</i> 3 values at <i>J</i> All correct, including cancelling and boxing. (condone omission of 0 at <i>A</i>) Final value at <i>K</i> is 61 (diagram takes precedence over value in body of script) (Notation: accept correct alternative notation eg 3 'box' method etc) <i>If working from K to A:</i> M1 2 values at <i>F</i> A1 values of 34 and 26 at <i>F</i> m1 2 values at <i>A</i> m1 only one value at every other vertex A1 as above, B1 final value at <i>A</i> is 61
(ii)	ABEIK	B1	1	Or reverse Condone AB, BE, EI, IK
(b)	63 (mins) oe	B1	1	
(c)	64 (mins) oe <i>ABFJK</i>	B1 B1	2	Or reverse
	Total		10	

Q	Solution	Mark	Total	Comment
4(a)	AC + EG = (6 + 9.5) = 15.5 AE + CG = 11 + 12.5 or 23.5 AG + CE = (7 + 8) = 15	M1 A2,1,0		These 3 sets of pairs stated All 3 correct, 2 correct
	79.5 + their min total = 94.5	m1 A1 cso	5	PI by their final answer (if M0 scored then 94.5 scores SC2)
(b)(i)	2	B1		
(ii)	3	B1	2	
(c)(i)	79.5 + their min edge	M1		PI by their final answer (must have 6 'values' in part (a))
	= 85.5	A1		If M0 scored then 85.5 scores 2/2
(ii)	E,G	B1	3	
	Total		10	

Q	Solution	Mark	Total	Comment
5	FR			Accuracy: All lines must be ruled, correct to within ½ small square both horizontally and vertically, at 'key' vertices, stated below. Ignore objective lines in part (a)
(a)	x = 1, y = 3 and x + y = 5 x + y = 12 3x + 8y = 64 Correct feasible region	B1 B1 M1 A1 B1	5	x + y = 5, correct at (0, 5) and (5, 0) Correct at (4, 8) and (8, 4) Line with 'correct' gradient (-0.5 to -0.3) passing through (0, 8). Correct at (8, 5) F.R. (a pentagon) clearly identified and labelled, must have scored previous 4 marks
(b)				If multiple vertices are listed then final answer must be clearly identified. For the second B1, the coordinates must be stated explicitly. (allow $x=9$, $y=3$ etc)
(i)	30, (9, 3)	B1, B1		
(ii)	29.6, (6.4, 5.6) oe	B1, B1		SC1 for 29 - 31, AND (6 - 7, 5 - 6)
(iii)	-15, (9, 3)	B1, B1	6	
	Total		11	

Q	Solution	Mark	Total	Comment
6(a)(i)	30	B1		
(ii)	20	B1	2	
(b)(i)	Quicker going via <i>L</i> oe	E 1	1	<i>MLN</i> (= 236), allow 126 + 110
(ii)	932 (mins) isw	B1	1	
(iii)	MLNLBLELM	M1		Any correct 'expansion' eg <i>MLN</i> , <i>NLB</i> or
		A1	2	BLE
(iv)	Script takes precedence over working on table. <i>MBLNEM</i> or <i>MBLNLEM</i> 796 (mins)	M1 m1 A1 A1 cso	4	Any tour starting and finishing at <i>M</i> Visits all vertices Correct order If M0 scored, then 796 scores SC2 If a candidate works only on a table M1 for 4 or 5 values circled m1 for 5 values circled, one per row/col A1 for correct values circled and order shown A1 for 796
	Total		10	

Q	Solution	Mark	Total	Comment
7	$4x + 10y + 10z \le 240$	M1		One correct inequality, PI by correct simplified inequalities
	$7x + 14y + 14z \le 210$			
	$14x + 21y + 28z \le 420$	A1		All 3 correct,(PI by correct simplified inequalities)
	(Leading to)			
	$2x + 5y + 5z \le 120 \text{ISW}$	m1		Correctly simplifying one inequality
	$x + 2y + 2z \le 30 \qquad \text{ISW}$			A 11
	$2x + 3y + 4z \le 60 \qquad \text{ISW}$	A1		All correct
	x > y + z ISW	B1		OE, must have all coefficients as ± 1
	$y \ge z$ ISW	B 1		OE, must have all coefficients as ± 1
	$y \ge \frac{15}{100}(x+y+z)$	M1		OE (but not 15%)
	(Leading to)			
	$17y \ge 3x + 3z$ ISW	A1		Any correct rearrangement involving integer coefficients
				$eg 17y - 3x - 3z \ge 0$
	Total		8	

Q	Solution	Mark	Total	Comment
8(a)(i)	If x is even, there would be three odds	M1		Or,
	Hence <i>x</i> is odd.	A1	2	Sum = $5x + 7$, must be even, M1 (so $5x$ must be odd), so x must be odd A1
(ii)	x = 1 (if only seen in part (i), this mark can be awarded if a correct graph is given in part (ii))	B1		
	Graph clearly having 5 vertices and 5 or 6 edges Correct graph must clearly have 5 vertices, 6 edges and degree of vertices as 1, 2, 2, 3, 4	B1 B1	3	eg
(b)(i)	(Min =) 0 (Max =) 9	B1 B1	2	
(ii)	(the degrees of the vertices must be 0, 1, 29) There would be an odd number of odds Impossible	E1 E1	2	Or, If all different, then sum = 45 Impossible, as sum must be even Or, Degrees of 0 and 9 would occur, Impossible as '9' would connect to the '0'
	Total		9	

A-LEVEL Mathematics

Decision 1 – MD01 Mark scheme

6360 June 2015

Version/Stage: Version 1.0 : Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

111	
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

mark is for method

Μ

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q1	Solution	Mark	Total	Comment
1	1			
	Path starting <i>D</i> -2+ <i>A</i> or 5- <i>A</i> +2	M1		Paths should be listed, but allow on
	Path starting E-3+B or 6-F+4	M1		diagram provided one path per
				diagram and start/end clearly labelled.
	D-2+A-5	A1		Or reverse
	<i>E</i> -3+ <i>B</i> -4+ <i>F</i> -6	A1		Or reverse
	Or			
	11			
	Path starting <i>D</i> -2+ <i>A</i> or 6- <i>F</i> +4	(M1)		
	followed by	. ,		
	Path starting E-3+C or 5-A+1	(M1)		
		()		
	D-2+A-1+C-3+B-4+F-6	(A1)		Or reverse
	followed by	. ,		
	E-3+C-1+A-5	(A1)		Or reverse
		()		
	Or			
	Path starting <i>E</i> -3+ <i>B</i> or 5- <i>A</i> +2	(M1)		
	followed by	()		
	Path starting D-2+B or 6-F+4	(M1)		
		()		
	E-3+B-2+A-5	(A1)		Or reverse
	followed by			
	D-2+B-4+F-6	(A1)		Or reverse
	Matching A5, B4, C1, D2, E3, F6	B1		Must be listed, not on a diagram
	Total		5	
Notes:		I	-	1

For **II and III** the paths MUST be in the order stated. If order is reversed then the max mark is M0A0M1A1 Watch for alternative, but correct, notation (needs to be clear).

If using a diagram, two paths indicated on one diagram will score M0.

Use of one long path, usually by attempting to combine two shorter ones, can earn a max of M1 A0 M0.

Q2	Solution	Mark	Total	Comment
2 (a) (i)	AC	M1		Use of Prim's, first three edges (not
	AD			numbers) correct
	CE	B1		7 different edges
	EH			
	HG	A1		Correct up to and including <i>AB</i> 6th
	AB			
	DF	A1	4	All correct
(ii)		M1		Spanning tree, no cycles, 8 vertices, 7 edges
	B E H	A1	2	Correct, including labels but ignore any lengths
(iii)	£1170	B1	1	Must include units.
(b)	Replace <i>CE</i> with <i>DG</i>	M1		PI
	New cost £1200			
	or (value of their "£1170" + £30)	A1F	2	Must include units.
	Tota		9	
Notes:				
	ccept a diagram with the order of selectio	n of edae	es clearly	indicated.
	and (b) penalise omission of units in the			

Q3	Solution	Mark	Total	Comment
3a	15	B1	1	
b	8	B1	1	
с	1	B1	1	
d	$\frac{n(n-1)}{2} \text{with } n = 16$ Or $\frac{n(n+1)}{2} \text{with } n = 15$	M1		PI (clear attempt to sum 1 st 15 integers)
	2 or 15 + 14 ++ 1 120	A1	2	NMS 120 scores 2/2
	Total		5	

Q4	Solution	Mark	Total	Comment
4 (a) (i)	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$	M1 A1 m1 A1	10101	Use of Dijkstra; two values at <i>E</i> and one at each of <i>G</i> and <i>H</i> Correct values only at <i>E</i> 2 values at each of <i>D</i> , <i>F</i> and <i>I</i> . Completely correct including all
(ii)	4 F 16 F 16 15 Route <i>ABEHFJ</i> or reverse	B1 B1	5	crossing out and boxing 19 at <i>J</i> . If stated in text as well, diagram takes precedence. Must be listed, not just marked on
(b)	12 + 19 + 3 (= 34) 11.04 (a.m.)	M1 A1F	2	diagram. Their final values for AD and AJ + 3 11.04 unsupported scores 2/2
	Total		8	

Q5	Solution	Mark	Total	Comment					
5 (a)	<i>AB</i> + <i>CG</i> = (50 + 240) = 290	M1		These 3 pairs stated including the					
	<i>AC</i> + <i>BG</i> = (100 + 230) = 330			intention to add					
	<i>AG+BC</i> = (210 + 70) = 280	A2,1		3 correct totals, 2 correct totals					
	Solution = 1400 + their min total	m1		Of three totals PI					
	= 1680 m	A 1	5	CSO Must include units					
(b)(i)	3	B1							
(ii)	3	B1	2						
	Total		7						
Notes:				•					
For 5(a), SC if M0 scored then 1680 m scores 2/5. Must include units.									

For 5(a), SC if M0 scored then 1680 scores 1/5 (no units)

Q	Soluti	on						Mark	Total	Comment
6 (a)	A B C D E F	A - 7 6 5 7 10	B 7 - 5 9 14 12	C 6 5 - 4 10 8	D 5 9 4 - 6 5	E 7 14 10 6 -	F 10 12 8 5 10 -	B2,1,0	2	- 1 each independent error
(b) (i) (ii)	∣ (7+10- It is a					I		B1 E1	1 1	A possible solution to the problem, OE
(c) (d)	DCBA (= 4+5 A B C D E F	5+7+7 A - 7 6 5 7	B 7 - 5 9 14	-5 =) C 6 5) - 4 10 8	D 9 4 -	E 7 14 10 6 -	F 10 12 8 5 10 -	M1 A1 B1	3	Hamiltonian cycle from D Correct order Correct length 6 different edges, not just numbers, of which exactly 2 are from A (seen in diagram, listed or in table)
	B C MST						• E	A1		Correct MST (seen in diagram, listed or in table) Correct edges from A (listed, in table or seen in diagram and clearly
(e)	Edges (5+4+0 31 < T	6+5)+	+(6+5					B1	4	identified) Their "31" $< T <$ their best of 2 ub
	Total	≥ 30	,					B1F	1 12	Their "31" < T \leq their best of 2 ub provided lb \leq ub Condone their "31" \leq T \leq their "38"

	Q7	Solution	Mark	Total	Comment
7	(a)	(<i>m</i> =) 4 or 5	B1		Either value, with no incorrect values, Or both correct and ONE other value.
			B1	2	Both values correct and no others
	(b)	(<i>n</i> =) 3, 4, 5 or 6	B1		Three correct values and no incorrect values or all four correct with at most
			B1	2	one extra value All correct with no extra values
	(c)				
			B1		Graph is simple and connected, and has 5 vertices, each with even degree.
			B1	2	Graph is isomorphic to one of the two shown.
		Total		6	
No	tes: (a		correct a		prrect answers
140	103. ja	r_{11} answer of 0, $-$, 0, 0 300103 D0 d3 2 0			

Q8			Solu	tion			Mark	Total	Comment
8 (a)	N	A	В	С	D	Print			
	5		0	v	2				
		1							
			1	0					
				0 1					
				T	2				
						1			For all marks:
	4								for each column/variable, condone 0s
		1	2						at the beginning of sequences and any repeated values
			-	2					
					3		M1		For N: sequence "5,4,3"
	2					1			For N. Sequence 3,4,3
	3	2							
		-	3				A1		For N: sequence "5,4,3,2,1,0"
				4					
					5	2			
	2					2	A1		For B: sequence "1,2,3,5,8" <u>and</u>
	-	3							for D: sequence "2,3,5,8,13"
			5						
				7	0				
					8	3			
	1					5			
		5							
			8	40					
				12	13				
					13	5	B1		All prints seen and correct
	0								
						12	A1	5	Complete correct solution including all
									prints seen
	L					I]			
(b)	<i>N</i> is u	sed a	s a st	opping	g conc	lition	E1	1	OE but not simply "a counter"
						Total		6	

Q9	Solution	Mark	Total	Comment
9 (a)	$400x + 400y + 600z \le 130000$	B1		OE
	$(2x+2y+3z \le 650)$ 200x + 500y + 200z \le 70000 (2x+5x+2z < 700)	B1		OE
	$(2x + 5y + 2z \le 700)$ $400x + 100y + 200z \le 72000$ $(4x + y + 2z \le 720)$	B1		OE
	$z \ge 75$	B1	4	OE but z terms must be collected
(b)	Substitute $z = x + y$ $2x + 2y + 3z \le 650 \Rightarrow 5x + 5y \le 650$ $\Rightarrow x + y \le 130$ $2x + 5y + 2z \le 700 \Rightarrow 4x + 7y \le 700$ $4x + y + 2z \le 720 \Rightarrow 6x + 3y \le 720$	М1		Clear substitution of $z = x + y$ into one of the first three inequalities
	$\Rightarrow 2x + y \le 240$ $z \ge 75 \Rightarrow x + y \ge 75$	A1	2	All correct. AG. (with middle line in 1 st and 3 rd inequalities)
(c)	10 T 10 T	B1 B1 B1 B1 B1	5	All points correct to within $\pm \frac{1}{2}$ a small square vertically <u>and</u> horizontally and lines ruled Line through (130,0) and (0,130) Line through (175,0) and (0,100) Line through (120,0) and (80,80) Line through (75,0) and (0,75) Feasible region correct and labelled, dep. on first B4
(d)	(<i>P</i> =) 50 <i>x</i> + 100 <i>y</i> + 150 <i>z</i> (<i>P</i> =) 200 <i>x</i> + 250 <i>y</i>	M1 A1	2	PI or seen ISW
(e) (i)	Either OL drawn with gradient -0.8	M1		Condone gradient of $-\frac{a}{b}$ or $-\frac{b}{a}$ from their <u>final</u> answer for part (d) $ax + by$
	<i>x</i> = 70, <i>y</i> = 60	A1 CSO		Dependent on gradient of -0.8
	or $(0, 100)$ $P = \pounds 25000$ $(70, 60)$ $P = \pounds 29000$ $(110, 20)$ $P = \pounds 27000$ $(120, 0)$ $P = \pounds 27000$	(M1)		SCA Attempt to identify and <u>list</u> at least the four relevant vertices (OE from <u>their</u> hexagon) and attempt at
	$(120, 0)$ $P = \pounds 24000$ so max at $x = 70$, $y = 60$	(A1 CSO)	2	finding some values of <i>P</i> . Must be clearly chosen from these four correct values
(ii)	<i>P</i> = £29000	B1		Including £
	70 tonnes Basic, 60 (tonnes) Premium, 130 (tonnes) Supreme	B1	2	All three correct, including units. (Not just $x = 70$, $y = 60$ and $z = 130$.)
	Total		17	